Planes de Estudios
- Maestría en Ciencias Biológicas
- Doctorado en Ciencias Biológicas

Grados que se otorgan
- Maestro en Ciencias Biológicas
- Doctor en Ciencias

Campos de conocimiento de la maestría
- Biología Evolutiva
- Biología Experimental
- Biomedicina
- Ecología
- Manejo Integral de Ecosistemas
- Sistemática

Entidades académicas participantes
- Facultad de Ciencias
- Facultad de Medicina
- Facultad de Estudios Superiores Iztacala
- Facultad de Estudios Superiores Zaragoza
- Escuela Nacional de Estudios Superiores Morelia
- Instituto de Biología
- Instituto de Ecología
- Instituto de Fisiología Celular
- Instituto de Geología
- Instituto de Investigaciones Biomédicas
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad
- Instituto de Ciencias del Mar y Limnología

Fechas de aprobación u opiniones

Modificación del Programa de Posgrado en Ciencias Biológicas.
- Fecha de Aprobación del Consejo Académico del Área de las Ciencias Biológicas, Químicas y de la Salud: 27 de junio 2016.
Índice

Obligatorias

<table>
<thead>
<tr>
<th>Tema</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRABAJO DE INVESTIGACIÓN I</td>
<td>6</td>
</tr>
<tr>
<td>TRABAJO DE INVESTIGACIÓN II</td>
<td>8</td>
</tr>
<tr>
<td>TRABAJO DE INVESTIGACIÓN III</td>
<td>10</td>
</tr>
<tr>
<td>TRABAJO DE INVESTIGACIÓN IV</td>
<td>12</td>
</tr>
</tbody>
</table>

Optativas de elección

<table>
<thead>
<tr>
<th>Tema</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campo de Conocimiento: Biología Evolutiva</td>
<td>15</td>
</tr>
<tr>
<td>ECOLOGÍA CONDUCTUAL</td>
<td>16</td>
</tr>
<tr>
<td>ECOLOGÍA EVOLUTIVA DE LAS INTERACCIONES BIÓTICAS</td>
<td>18</td>
</tr>
<tr>
<td>ECOLOGÍA Y EVOLUCIÓN DE HISTORIAS DE VIDA</td>
<td>20</td>
</tr>
<tr>
<td>ESTADÍSTICA EN ECOLOGÍA</td>
<td>22</td>
</tr>
<tr>
<td>EVOLUCIÓN</td>
<td>25</td>
</tr>
<tr>
<td>EVOLUCIÓN DEL DESARROLLO</td>
<td>28</td>
</tr>
<tr>
<td>FILOGEOGRAFÍA</td>
<td>32</td>
</tr>
<tr>
<td>GENÉTICA CUANTITATIVA Y ECOLÓGICA</td>
<td>34</td>
</tr>
<tr>
<td>GENÉTICA DE LA CONSERVACIÓN</td>
<td>37</td>
</tr>
<tr>
<td>GENÉTICA DE POBLACIONES</td>
<td>39</td>
</tr>
<tr>
<td>GENÉTICA DEL PAISAJE</td>
<td>42</td>
</tr>
<tr>
<td>HISTORIA Y FILOSOFÍA DE LA CIENCIA</td>
<td>44</td>
</tr>
<tr>
<td>MÉTODO COMPARATIVO</td>
<td>46</td>
</tr>
<tr>
<td>BIOLOGÍA DEL DESARROLLO EN PLANTAS</td>
<td>48</td>
</tr>
<tr>
<td>MÉTODOS DE RECONSTRUCCIÓN FILOGENÉTICA</td>
<td>51</td>
</tr>
<tr>
<td>EXPRESIÓN GENÉTICA, REGULACIÓN METABÓLICA, Y ASPECTOS EVOLUTIVOS</td>
<td>54</td>
</tr>
</tbody>
</table>

Campo de Conocimiento: Biología Experimental

<table>
<thead>
<tr>
<th>Tema</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOFÍSICA Y FISIOLOGÍA CELULAR</td>
<td>57</td>
</tr>
<tr>
<td>BIOLOGÍA CELULAR</td>
<td>59</td>
</tr>
<tr>
<td>BIOLOGÍA DEL DESARROLLO</td>
<td>61</td>
</tr>
<tr>
<td>BIOLOGÍA MOLECULAR</td>
<td>64</td>
</tr>
<tr>
<td>BIOQUÍMICA</td>
<td>67</td>
</tr>
<tr>
<td>DISEÑO EXPERIMENTAL Y ESTADÍSTICA</td>
<td>70</td>
</tr>
<tr>
<td>FUNDAMENTOS DE LAS TÉCNICAS DE BIOLOGÍA MOLECULAR</td>
<td>72</td>
</tr>
<tr>
<td>INMUNOLOGÍA AVANZADA: MOLÉCULAS DE LA RESPUESTA INMUNE</td>
<td>75</td>
</tr>
<tr>
<td>PROTEÔMICA</td>
<td>77</td>
</tr>
<tr>
<td>Temas</td>
<td>Páginas</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Sistemas de información geográfica y modelación espacial</td>
<td>154</td>
</tr>
<tr>
<td>Sociedad, economía y legislación ambiental</td>
<td>156</td>
</tr>
<tr>
<td>Campo de Conocimiento: Sistemática</td>
<td>159</td>
</tr>
<tr>
<td>Biodiversidad, taxonomía y conservación</td>
<td>160</td>
</tr>
<tr>
<td>Biogeografía evolutiva</td>
<td>162</td>
</tr>
<tr>
<td>Biología comparada</td>
<td>164</td>
</tr>
<tr>
<td>Evolución</td>
<td>167</td>
</tr>
<tr>
<td>Filogeografía</td>
<td>170</td>
</tr>
<tr>
<td>Método comparativo</td>
<td>172</td>
</tr>
<tr>
<td>Métodos de reconstrucción filogenética</td>
<td>174</td>
</tr>
<tr>
<td>Sistemática molecular</td>
<td>177</td>
</tr>
<tr>
<td>Optativas</td>
<td>180</td>
</tr>
<tr>
<td>Campo de Conocimiento: Biología Evolutiva</td>
<td>181</td>
</tr>
<tr>
<td>Temas selectos-estancia de investigación</td>
<td>182</td>
</tr>
<tr>
<td>Temas selectos de biología evolutiva</td>
<td>183</td>
</tr>
<tr>
<td>Campo de Conocimiento: Biología Experimental</td>
<td>184</td>
</tr>
<tr>
<td>Temas selectos-estancia de investigación</td>
<td>185</td>
</tr>
<tr>
<td>Temas selectos de biología experimental</td>
<td>186</td>
</tr>
<tr>
<td>Campo de Conocimiento: Biomedicina</td>
<td>187</td>
</tr>
<tr>
<td>Temas selectos-estancia de investigación</td>
<td>188</td>
</tr>
<tr>
<td>Temas selectos de biomedicina</td>
<td>189</td>
</tr>
<tr>
<td>Campo de Conocimiento: Ecología</td>
<td>190</td>
</tr>
<tr>
<td>Temas selectos-estancia de investigación</td>
<td>191</td>
</tr>
<tr>
<td>Temas selectos de ecología</td>
<td>192</td>
</tr>
<tr>
<td>Campo de Conocimiento: Manejo integral de ecosistemas</td>
<td>193</td>
</tr>
<tr>
<td>Temas selectos-estancia de investigación</td>
<td>194</td>
</tr>
<tr>
<td>Temas selectos de manejo integral de ecosistemas</td>
<td>195</td>
</tr>
<tr>
<td>Campo de Conocimiento: Sistemática</td>
<td>196</td>
</tr>
<tr>
<td>Temas selectos-estancia de investigación</td>
<td>197</td>
</tr>
<tr>
<td>Temas selectos de sistemática</td>
<td>198</td>
</tr>
</tbody>
</table>
Obligatorias
Denominación:
TRABAJO DE INVESTIGACIÓN I

<table>
<thead>
<tr>
<th>Carácter:</th>
<th>Obligatorio</th>
<th>Horas</th>
<th>No. Créditos: 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semestre(s):</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campo de Conocimiento:</td>
<td>Biología Evolutiva, Biología Experimental, Biomedicina, Ecología, Manejo Integral de Ecosistemas, y Sistemática</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horas por semana</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horas al Semestre</td>
<td>64</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Carácter:
Obligatorio

Horas totales:
32 Teóricas, 32 Prácticas

Duración del programa:
Semestral

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Teóricas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El alumno y el tutor trabajarán sobre el proyecto de investigación presentado como requisito de ingreso a la maestría.</td>
</tr>
<tr>
<td></td>
<td>El alumno problematizará y escribirá el marco teórico de su investigación, y en su caso iniciará la investigación de campo o laboratorio.</td>
</tr>
<tr>
<td></td>
<td>El alumno entregará al Comité Tutor el informe semestral, por escrito, de acuerdo a lo previsto en las normas operativas.</td>
</tr>
</tbody>
</table>

Bibliografía Básica:
La requerida de acuerdo con la temática de la investigación a desarrollar.

Bibliografía Complementaria:
La requerida de acuerdo con la temática de la investigación a desarrollar.
<table>
<thead>
<tr>
<th>Sugerencias didácticas:</th>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral</td>
<td>Exámenes Parciales</td>
</tr>
<tr>
<td>(x)</td>
<td></td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td>Examen final escrito</td>
</tr>
<tr>
<td>()</td>
<td></td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>Trabajos y tareas fuera del aula</td>
</tr>
<tr>
<td>()</td>
<td></td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>Exposición de seminarios por los alumnos</td>
</tr>
<tr>
<td>()</td>
<td></td>
</tr>
<tr>
<td>Seminarios</td>
<td>Participación en clase</td>
</tr>
<tr>
<td>()</td>
<td></td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>Asistencia</td>
</tr>
<tr>
<td>(x)</td>
<td></td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>Seminario (x)</td>
</tr>
<tr>
<td>(x)</td>
<td></td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>(x)</td>
</tr>
<tr>
<td>(x)</td>
<td></td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td></td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

| Otros: | |

| Nota: El comité tutor valorará el avance del alumno en la evaluación semestral. |

<table>
<thead>
<tr>
<th>Perfil profesiográfico:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutor asignado por el Comité Académico. El profesor que impartirá la actividad académica deberá contar con el grado de maestría o doctorado y poseer amplios conocimientos en el área de especialización del alumno, así como tener experiencia docente.</td>
</tr>
</tbody>
</table>
Denominación: TRABAJO DE INVESTIGACIÓN II
Clave:
Semestre(s): 2
Campo de Conocimiento: Biología Evolutiva, Biología Experimental, Biomedicina, Ecología, Manejo Integral de Ecosistemas, y Sistemática
No. Créditos: 10
Carácter: Obligatorio
Horas por Semana:
Horas al Semestre:
Tipo: Teórico-práctica
Modalidad: Tutoría
Duración del programa: Semestral

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
<th>Teóricas</th>
<th>Prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El alumno continuará con su investigación. Conjuntamente con su tutor o tutores principales el alumno problematizará la metodología que sustenta su investigación, elaborará los instrumentos de medición, obtendrá el universo de estudio e iniciará o continuará con la fase experimental y/o de campo.

El alumno entregará al Comité Tutor el informe semestral, por escrito, de acuerdo a lo previsto en las normas operativas.

Total de horas: 40
Suma total de horas: 80

Bibliografía Básica:
La requerida de acuerdo con la temática de la investigación a desarrollar.

Bibliografía Complementaria:
La requerida de acuerdo con la temática de la investigación a desarrollar.
<table>
<thead>
<tr>
<th>Sugerencias didácticas:</th>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral</td>
<td>Exámenes Parciales</td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td>Examen final escrito</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>Trabajos y tareas fuera del aula</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>Exposición de seminarios por los alumnos</td>
</tr>
<tr>
<td>Seminarios</td>
<td>Participación en clase</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>Asistencia</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>Seminario</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>(x)</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>Otras:</td>
</tr>
<tr>
<td>Otros:</td>
<td>Nota: El comité tutor valorará el avance del alumno en la evaluación semestral.</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfil profesiográfico:</td>
<td></td>
</tr>
<tr>
<td>Tutor asignado por el Comité Académico. El profesor que impartirá la actividad académica deberá contar con el grado de maestría o doctorado y poseer amplios conocimientos en el área de especialización del alumno, así como tener experiencia docente.</td>
<td></td>
</tr>
</tbody>
</table>
Denominación

TRABAJO DE INVESTIGACIÓN III

<table>
<thead>
<tr>
<th>Clave:</th>
<th>Semestre(s): 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campo de Conocimiento:</td>
<td>Biología Evolutiva, Biología Experimental, Biomedicina, Ecología, Manejo Integral de Ecosistemas, y Sistemática</td>
</tr>
<tr>
<td>No. Créditos:</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carácter:</th>
<th>Obligatorio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horas</td>
<td></td>
</tr>
<tr>
<td>Horas por semana</td>
<td></td>
</tr>
<tr>
<td>Horas al Semestre</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo:</th>
<th>Teórico-práctica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teoría:</td>
<td>3</td>
</tr>
<tr>
<td>Práctica:</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modalidad:</th>
<th>Tutoría</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duración del programa:</td>
<td>Semestral</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seriación:</th>
<th>Sin Seriación () Obligatoria () Indicativa (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividad académica antecedente:</td>
<td>Trabajo de Investigación II</td>
</tr>
<tr>
<td>Actividad académica subsecuente:</td>
<td>Trabajo de Investigación IV</td>
</tr>
<tr>
<td>Objetivo general:</td>
<td>Concluyendo con la investigación que resultará en el desarrollo de un trabajo con el que se graduará el alumno.</td>
</tr>
</tbody>
</table>

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Teóricas</td>
</tr>
</tbody>
</table>

El alumno continuará con su investigación. Deberá concluir la fase experimental y/o de campo. Asimismo recopilará, analizará y recopilará los datos obtenidos de su trabajo de campo y/o experimental bajo la asesoría de su tutor o tutores principales.

Al finalizar el tercer semestre el alumno conjuntamente con su tutor deberá revisar los avances obtenidos y a partir de ello elegir una de las modalidades para graduarse. El alumno deberá solicitar al Comité Académico autorización para graduarse por la modalidad elegida.

El alumno entregará al Comité Tutor el informe semestral, por escrito, de acuerdo a lo previsto en las normas operativas.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>48</td>
</tr>
</tbody>
</table>

Total de horas: 48 **Suma total de horas:** 96

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
</table>
| | El alumno continuará con su investigación. Deberá concluir la fase experimental y/o de campo. Asimismo recopilará, analizará y recopilará los datos obtenidos de su trabajo de campo y/o experimental bajo la asesoría de su tutor o tutores principales.

Al finalizar el tercer semestre el alumno conjuntamente con su tutor deberá revisar los avances obtenidos y a partir de ello elegir una de las modalidades para graduarse. El alumno deberá solicitar al Comité Académico autorización para graduarse por la modalidad elegida.

El alumno entregará al Comité Tutor el informe semestral, por escrito, de acuerdo a lo previsto en las normas operativas. |

Bibliografía Básica:
La requerida de acuerdo con la temática de la investigación a desarrollar.

Bibliografía Complementaria:

La requerida de acuerdo con la temática de la investigación a desarrollar.

<table>
<thead>
<tr>
<th>Sugerencias didácticas:</th>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral</td>
<td>Exámenes Parciales</td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td>Examen final escrito</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>Trabajos y tareas fuera del aula</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>Exposición de seminarios por los alumnos</td>
</tr>
<tr>
<td>Seminarios</td>
<td>Participación en clase</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>Asistencia</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>Seminario</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>(x)</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>Otras:</td>
</tr>
<tr>
<td>Otros:</td>
<td>Nota: El comité tutor valorará el avance del alumno en la evaluación semestral.</td>
</tr>
</tbody>
</table>

Lecturas obligatorias	(x)
Trabajo de Investigación	(x)
Prácticas de taller o laboratorio	(x)
Prácticas de campo	()

Perfil profesiográfico:

Tutor asignado por el Comité Académico. El profesor que impartirá la actividad académica deberá contar con el grado de maestría o doctorado y poseer amplios conocimientos en el área de especialización del alumno, así como tener experiencia docente.
<table>
<thead>
<tr>
<th>Denominación:</th>
<th>TRABAJO DE INVESTIGACIÓN IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clave:</td>
<td>Semestre(s): 4</td>
</tr>
<tr>
<td>Campo de Conocimiento:</td>
<td>Biología Evolutiva, Biología Experimental, Biomedicina, Ecología, Manejo Integral de Ecosistemas, y Sistemática</td>
</tr>
<tr>
<td>No. Créditos:</td>
<td>0</td>
</tr>
<tr>
<td>Carácter:</td>
<td>Obligatorio</td>
</tr>
<tr>
<td>Horas por semana:</td>
<td>8</td>
</tr>
<tr>
<td>Horas al Semestre:</td>
<td>128</td>
</tr>
<tr>
<td>Tipo:</td>
<td>Teórico-práctica</td>
</tr>
<tr>
<td>Teoría:</td>
<td>4</td>
</tr>
<tr>
<td>Práctica:</td>
<td>4</td>
</tr>
<tr>
<td>Modalidad:</td>
<td>Tutoría</td>
</tr>
<tr>
<td>Duración del programa:</td>
<td>Semestral</td>
</tr>
<tr>
<td>Seriación:</td>
<td>Sin Seriación () Obligatoria () Indicativa (X)</td>
</tr>
<tr>
<td>Actividad académica antecedente:</td>
<td>Trabajo de Investigación III</td>
</tr>
<tr>
<td>Objetivo general:</td>
<td>Finalizar la escritura del trabajo con el que se graduará el alumno.</td>
</tr>
</tbody>
</table>

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Teóricas</td>
</tr>
<tr>
<td></td>
<td>El alumno deberá concluir la redacción del trabajo con el que se graduará, de acuerdo a la modalidad autorizada por el Comité Académico.</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>El alumno entregará al Comité Tutor el informe semestral, por escrito, de acuerdo a lo previsto en las normas operativas.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Suma total de horas:</td>
<td>128</td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El alumno deberá concluir la redacción del trabajo con el que se graduará, de acuerdo a la modalidad autorizada por el Comité Académico.</td>
</tr>
<tr>
<td></td>
<td>El alumno entregará al Comité Tutor el informe semestral, por escrito, de acuerdo a lo previsto en las normas operativas.</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

La requerida de acuerdo con la temática de la investigación a desarrollar.

Bibliografía Complementaria:

La requerida de acuerdo con la temática de la investigación a desarrollar.
Sugerencias didácticas:
- Exposición oral
- Exposición audiovisual
- Ejercicios dentro de clase
- Ejercicios fuera del aula
- Seminarios
- Lecturas obligatorias
- Trabajo de investigación
- Prácticas de taller o laboratorio
- Prácticas de campo
- Otros:

Mecanismos de evaluación de aprendizaje de los alumnos:
- Exámenes Parciales
- Examen final escrito
- Trabajos y tareas fuera del aula
- Exposición de seminarios por los alumnos
- Participación en clase
- Asistencia
- Seminario
- Otras:

Notas: El comité tutor valorará el avance del alumno en la evaluación semestral.

Perfil profesionógráfico:
Tutor asignado por el Comité Académico. El profesor que impartirá la actividad académica deberá contar con el grado de maestría o doctorado y poseer amplios conocimientos en el área de especialización del alumno, así como tener experiencia docente.
Optativas de elección
Campo de Conocimiento: Biología Evolutiva
Denominación: **ECOLOGÍA CONDUCTUAL**
Clave:
Semestre(s): 1
Campo de Conocimiento: Biología Evolutiva, Ecología
No. Créditos: 8
Carácter: Optativo de elección
Horas:
Horas por semana: 4
Horas al Semestre: 64
Tipo: Teórica
Teoría: 4
Práctica: 0
Modalidad: Curso
Duración del programa: Semestral
Seriación: Sin Seriación (X)
Obligatoria ()
Indicativa ()
Objetivo general: Conocer, analizar y criticar algunos de los principales conceptos, teorías y modelos de la Ecología Conductual; además, revisar, evaluar y criticar los métodos que se usan para hacer investigación.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
<th>Horas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Teóricas</td>
<td>Prácticas</td>
</tr>
<tr>
<td>1</td>
<td>Introducción</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Conceptos y definiciones de la ecología conductual</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Mecanismos</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Reproducción</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Conflicto</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Estrategias alternativas</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Relaciones</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Conservación</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Ética en estudios con animales</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Suma total de horas:</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td></td>
<td>1.1 Función de la Conducta</td>
</tr>
<tr>
<td></td>
<td>1.1.1 Concepto de la función</td>
</tr>
<tr>
<td></td>
<td>1.1.2 Experimentos y observaciones</td>
</tr>
<tr>
<td></td>
<td>1.2 Selección Natural y Adaptación</td>
</tr>
<tr>
<td></td>
<td>1.2.1 Selección y el individuo</td>
</tr>
<tr>
<td></td>
<td>1.2.2 El método comparativo</td>
</tr>
<tr>
<td></td>
<td>1.2.3. El método experimental</td>
</tr>
<tr>
<td></td>
<td>1.3 Desarrollo de la conducta</td>
</tr>
<tr>
<td></td>
<td>1.3.1 Instinto y conducta innata</td>
</tr>
<tr>
<td></td>
<td>1.3.2 Ontogenia de la conducta</td>
</tr>
<tr>
<td></td>
<td>1.3.3 Aprendizaje</td>
</tr>
<tr>
<td></td>
<td>1.3.4 Evolución del aprendizaje</td>
</tr>
<tr>
<td>2</td>
<td>Conceptos y definiciones de la ecología conductual</td>
</tr>
<tr>
<td></td>
<td>2.1 Selección individual y de grupo</td>
</tr>
<tr>
<td></td>
<td>2.2 Adecuación inclusiva, selección de parentesco y altruismo</td>
</tr>
<tr>
<td></td>
<td>2.3 Estrategias evolutivamente estables</td>
</tr>
<tr>
<td>3</td>
<td>Mecanismos</td>
</tr>
<tr>
<td>4</td>
<td>Reproducción</td>
</tr>
<tr>
<td></td>
<td>4.1 Selección de la pareja</td>
</tr>
<tr>
<td></td>
<td>4.1.1 Selección sexual</td>
</tr>
<tr>
<td></td>
<td>4.1.2 Competencia espermática</td>
</tr>
<tr>
<td></td>
<td>4.1.3 Elección críptica por parte de las hembras</td>
</tr>
<tr>
<td></td>
<td>4.1.4 Selección sexual y especiación</td>
</tr>
<tr>
<td></td>
<td>4.2 Sistemas de apareamiento</td>
</tr>
<tr>
<td></td>
<td>4.2.1 Monogamia, políginia, polianidria, promiscuidad (Ensayo 1)</td>
</tr>
</tbody>
</table>
Unidad | Tema y Subtemas
---|---
4 | 4.3 Cuidado paterno e inversión paterna
4 | 4.4 Infanticidio y conflicto padre-hijo
4 | 4.4.1 Causas e hipótesis
4 | 4.4.2 Fraticidio
4 | 4.5 Cooperación y familias
5 | Conflicto
6 | Estrategias alternativas
6 | 6.1 Diferencias entre individuos en competencia por
6 | 6.1.1 Parejas
6 | 6.1.2 Alimento
6 | 6.1.3 Sitios de anidación
7 | Relaciones
8 | Conservación
9 | Ética en estudios con animales
9 | 9.1 Conciencia animal
9 | 9.2 Derechos (Ensayo 2)

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
- Exposición oral (x)
- Exposición audiovisual (x)
- Ejercicios dentro de clase (x)
- Ejercicios fuera del aula (x)
- Seminarios (x)
- Lecturas obligatorias (x)
- Trabajo de Investigación ()
- Prácticas de taller o laboratorio ()
- Prácticas de campo ()
- Otros: ()

Mecanismos de evaluación de aprendizaje de los alumnos:
- Exámenes Parciales (x)
- Examen final escrito (x)
- Trabajos y tareas fuera del aula (x)
- Participación en clase (X)
- Asistencia (X)
- Seminario (X)
- Otras: Ensayo (2)

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en ecología conductual, así como tener experiencia docente.
Denominación: ECOLOGÍA EVOLUTIVA DE LAS INTERACCIONES BIÓTICAS
Clave: Optativo de elección
Semestre(s): 1
Campo de Conocimiento: Biología Evolutiva
No. Créditos: 8
Carácter: Optativo de elección
Horas por semana: 4
Horas al Semestre: 64
Tipo: Teórica
Teoría: 4
Práctica: 0
Modalidad: Curso
Duración del programa: Semestral

Objetivo general:
Analizar las teorías y metodologías necesarias para entender la ecología evolutiva de las interacciones bióticas, incorporando la teoría de conflictos y la evolución de señales.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td>1.1</td>
<td>Variación</td>
</tr>
<tr>
<td>1.2</td>
<td>Descomposición de la variación y heredabilidad</td>
</tr>
<tr>
<td>2</td>
<td>Procesos evolutivos</td>
</tr>
<tr>
<td>2.1</td>
<td>Integración de procesos evolutivos (mutación, deriva génica, migración, selección natural)</td>
</tr>
<tr>
<td>2.2</td>
<td>Tipos de selección natural</td>
</tr>
<tr>
<td>2.3</td>
<td>Selección sexual</td>
</tr>
<tr>
<td>2.4</td>
<td>Selección natural sobre caracteres cuantitativos</td>
</tr>
<tr>
<td>2.5</td>
<td>Genética de poblaciones y selección natural</td>
</tr>
<tr>
<td>3</td>
<td>Una visión integral de las interacciones: incorporando la teoría de conflictos y la evolución de señales</td>
</tr>
<tr>
<td>4</td>
<td>Modelos evolutivos</td>
</tr>
<tr>
<td>4.1</td>
<td>Modelos de optimización simple</td>
</tr>
<tr>
<td>4.2</td>
<td>Equilibrios evolutivamente estables</td>
</tr>
<tr>
<td>5</td>
<td>Del antagonismo al mutualismo y de reversa</td>
</tr>
<tr>
<td>5.1</td>
<td>Recreando la evolución de las interacciones</td>
</tr>
<tr>
<td>5.2</td>
<td>Selección dependiente de la frecuencia</td>
</tr>
<tr>
<td>5.3</td>
<td>Correlación de caracteres</td>
</tr>
<tr>
<td>5.4</td>
<td>Evolución de señales</td>
</tr>
<tr>
<td>6</td>
<td>Del antagonismo al mutualismo</td>
</tr>
<tr>
<td>6.1</td>
<td>Herbivoría: evolución de defensas y contradefensas</td>
</tr>
<tr>
<td>6.2</td>
<td>Conducta en plantas</td>
</tr>
</tbody>
</table>

Total de horas: 64
Suma total de horas: 64
Unidad	Tema y Subtemas
6	6.3 Interacciones multi-tróficas
6.4 Coevolución	
7	Heterogeneidad ambiental y ecológica
7.1 Teoría del mosaic geográfico	
7.2 Plasticidad fenotípica	
8	Conflictos de interés y evolución del engaño
8.1 Estrategias deshonestas en plantas	
9	Evolución de fenotipos complejos
9.1 Integración fenotípica	
9.2 Epigenética e interacciones bióticas	
10	Impactos antropogénicos en las interacciones bióticas
10.1. Efectos de cambios globales sobre las interacciones bióticas	
10.2 Efectos de las invasiones biológicas sobre las interacciones bióticas	

Bibliografía Básica:

Bibliografía Complementaria:
- Westcrbergh, A. An interaction between a specialized seed predator moth and its dioecious host plant shifting from parasitism to mutualism. *Oikos*, 105, 2004, 564-574.

Sugerencias didácticas:
Exposición oral	(x)
Exposición audiovisual	(x)
Ejercicios dentro de clase	(x)
Ejercicios fuera del aula	(x)
Seminarios	(x)
Lecturas obligatorias	(x)
Trabajo de Investigación	()
Prácticas de taller o laboratorio	()
Prácticas de campo	()
Otros:	

Mecanismos de evaluación de aprendizaje de los alumnos:
Exámenes Parciales	(x)
Examen final escrito	(x)
Trabajos y tareas fuera del aula	()
Exposición de seminarios por los alumnos	(x)
Participación en clase	(x)
Asistencia	()
Seminario	(x)
Otras:	

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en ecología evolutiva, así como tener experiencia docente.
Denominación:
ECOLOGÍA Y EVOLUCIÓN DE HISTORIAS DE VIDA

<table>
<thead>
<tr>
<th>Clave:</th>
<th>Optativo de elección</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semestre(s):</td>
<td>1</td>
</tr>
<tr>
<td>Campo de Conocimiento:</td>
<td>Biología Evolutiva</td>
</tr>
<tr>
<td>No. Créditos:</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carácter:</th>
<th>Teórica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horas</td>
<td>Teoría: 4</td>
</tr>
<tr>
<td>Práctica: 0</td>
<td></td>
</tr>
<tr>
<td>Horas por semana</td>
<td>4</td>
</tr>
<tr>
<td>Horas al Semestre</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modalidad:</th>
<th>Curso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duración del programa:</td>
<td>Semestral</td>
</tr>
</tbody>
</table>

Objetivo general:
Analizar la ecología y evolución de las historias de vida.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción general</td>
</tr>
<tr>
<td>2</td>
<td>Historias de vida</td>
</tr>
<tr>
<td>3</td>
<td>Disyuntiva de historias de vida (Trade-off)</td>
</tr>
<tr>
<td>4</td>
<td>Estrategias de historias de vida</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción general</td>
</tr>
<tr>
<td>2</td>
<td>Historias de vida</td>
</tr>
<tr>
<td>3</td>
<td>Disyuntiva de historias de vida (Trade-off)</td>
</tr>
<tr>
<td>4</td>
<td>Estrategias de historias de vida</td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción general</td>
</tr>
<tr>
<td>2</td>
<td>Historias de vida</td>
</tr>
<tr>
<td>3</td>
<td>Disyuntiva de historias de vida (Trade-off)</td>
</tr>
<tr>
<td>4</td>
<td>Estrategias de historias de vida</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td>4.3</td>
<td>Reproducción y longevidad</td>
</tr>
<tr>
<td>4.4</td>
<td>La clasificación de Grime</td>
</tr>
<tr>
<td>4.5</td>
<td>Triángulo demográfico (Estrategias S-C-R)</td>
</tr>
<tr>
<td>4.6</td>
<td>Adecuación</td>
</tr>
<tr>
<td>4.7</td>
<td>Sensibilidad y Elasticidad</td>
</tr>
<tr>
<td>5</td>
<td>Filogenia e historias de vida</td>
</tr>
<tr>
<td></td>
<td>5.1 Éfectos del linaje</td>
</tr>
<tr>
<td></td>
<td>5.2 Origen de los efectos filogenéticos</td>
</tr>
<tr>
<td></td>
<td>5.3 El método comparativo</td>
</tr>
<tr>
<td></td>
<td>5.4 Filogenia y adaptación</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
- Exposición oral (X)
- Exposición audiovisual (X)
- Ejercicios dentro de clase (X)
- Ejercicios fuera del aula (X)
- Seminarios (X)
- Lecturas obligatorias (X)
- Trabajo de Investigación (X)
- Prácticas de taller o laboratorio (X)
- Prácticas de campo (X)
- Otros: (X)

Mecanismos de evaluación de aprendizaje de los alumnos:
- Exámenes Parciales (X)
- Examen final escrito (X)
- Trabajos y tareas fuera del aula (X)
- Exposición de seminarios por los alumnos (X)
- Participación en clase (X)
- Asistencia (X)
- Seminario (X)
- Otras: (X)

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en ecología y evolución de historias de vida, así como tener experiencia docente.
Denominación: ESTADÍSTICA EN ECOLOGÍA

<table>
<thead>
<tr>
<th>Clave:</th>
<th>Semestre(s): 1</th>
<th>Campo de Conocimiento: Biología Evolutiva, Ecología, Manejo Integral de Ecosistemas</th>
<th>No. Créditos: 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carácter:</td>
<td>Optativo de elección</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo:</td>
<td>Teórico-Práctica</td>
<td>Horas</td>
<td>Horas por semana</td>
</tr>
<tr>
<td>Teoría: 2</td>
<td>Práctica: 2</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Modalidad:</td>
<td>Curso</td>
<td>Duración del programa: Semestral</td>
<td></td>
</tr>
</tbody>
</table>

Seriatización: Sin Seriatización (X) Obligatoria () Indicativa ()

Objetivo general:
Ofrecer las nociones de estadística necesarias para que el alumno sea capaz de: (1) comprender los análisis estadísticos presentados en artículos científicos, (2) plantear preguntas ecológicas relevantes en términos estadísticos, (3) elaborar diseños de muestreo y de experimentación en el área de la ecología, (4) enfrentarse a “situaciones reales” que requieren el uso de herramientas estadísticas.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
<th>Horas</th>
<th>Teóricas</th>
<th>Prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción: La idea de una prueba estadística</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.1 Variabilidad en poblaciones naturales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2 Idea de una prueba estadística</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3 Necesidad de la estadística en biología</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4 Hipótesis nulas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 La importancia del diseño de muestreo y experimental</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Herramientas</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2.1 Álgebra de matrices y vectores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2 Hojas de cálculo: ventajas y limitaciones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3 Paquetes de software: “R” y “Mathematica”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4 Elementos de programación en Visual Basic y en “R”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5 Modelos estadísticos y dinámicos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Probabilidad</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3.1 Definiciones de probabilidad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2 El espacio muestral, teoría de conjuntos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.3 La teoría matemática de la probabilidad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4 El teorema de Bayes y la probabilidad condicional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Distribuciones estadísticas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.1 Variables aleatorias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2 Poblaciones y muestras</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.3 Distribuciones discretas y continuas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.4 Medias de tendencia central y de variación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.5 El teorema del límite central</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Muestreo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.1 Variabilidad biológica en el espacio y el tiempo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.2 Teoría general del muestreo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.3 Diseños de muestreo en ecología</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.4 Herramientas de inferencia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Pruebas de hipótesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.1 El método científico y el diseño de experimentos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.2 El planteamiento de hipótesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.3 Significancia estadística y significancia biológica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.4 Pruebas paramétricas, no paramétricas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.5 Métodos Monte Carlo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.6 Estadística bayesiana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>El análisis de varianza (ANOVA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.1 Propiedades de la distribución normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.2 Partición de la varianza en pruebas de hipótesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.3 Diseños experimentales usando ANOVA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.4 Pruebas de hipótesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Regresión y correlaciones lineales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.1 Modelos lineales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.2 Ajuste por mínimos cuadrados</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.3 Pruebas de hipótesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.4 Regresión no lineal y métodos alternativos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.5 Modelos lineales generalizados (GLMs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Análisis de datos categóricos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.1 Tablas de contingencia de 2x2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.2 La distribución</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.3 Tablas de contingencia: teoría general</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.4 Pruebas de bondad de ajuste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Pruebas no paramétricas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.1 Pruebas de hipótesis no paramétricas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.2 Correlación no paramétrica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.3 El problema de las muestras pequeñas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Estadística multivariada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.1 Métodos de exploración de tendencias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.2 Ordenación y clasificación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.3 La distribución normal multivariada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.4 Análisis de varianza multivariado (MANOVA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.5 Regresión y correlación múltiples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Temas especiales de ecología estadística</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.1 Pseudorrepetición: teoría y práctica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.2 Modelos nulos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.3 Alometría y análisis de escalas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.4 Inferencia bayesiana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.5 Meta-análisis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Actividad</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral</td>
<td></td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td>()</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X)</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>()</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>()</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
<tr>
<td>Otros</td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

<table>
<thead>
<tr>
<th>Mecanismo</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exámenes Parciales</td>
<td></td>
</tr>
<tr>
<td>Examen final escrito</td>
<td></td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
<td>()</td>
</tr>
<tr>
<td>Participación en clase</td>
<td>()</td>
</tr>
<tr>
<td>Asistencia</td>
<td>()</td>
</tr>
<tr>
<td>Seminario</td>
<td>()</td>
</tr>
<tr>
<td>Otras</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en estadística, así como tener experiencia docente.
Denominación: **EVOLUCIÓN**

Clave:
Semestre(s): 1
Campo de Conocimiento: Biología Evolutiva, Sistemática
No. Créditos: 8

Carácter: Optativo de elección
Horas
Horas por semana
Horas al Semestre

Tipo: Teórica
Teoría: 4
Práctica: 0
4
64

Modalidad: Curso
Duración del programa: Semestral

Seriación: Sin Seriación (X)
Obligatoria ()
Indicativa ()

Objetivo general:
Que los alumnos estén realmente familiarizados con los aspectos fundamentales del proceso evolutivo que les permita adentrarse posteriormente en aspectos más sofisticados y experimentales de la biología evolutiva en sus diferentes facetas.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
</table>
| 1 | Introducción: ¿Qué es la biología evolutiva?
1.1 Diversidad y adaptación
1.2 Microevolución y macroevolución
1.3 Un poco de Historia |
| 2 | Las poblaciones en equilibrio
2.1 La Variación en las poblaciones naturales
2.2 Algunos conceptos de genética fundamentales
2.3 Introducción a la Genética de Poblaciones
2.4 La ley del equilibrio de Hardy-Weinberg |
| 3 | Los procesos evolutivos en las poblaciones
3.1 La selección natural
3.2 La deriva Gérica
3.3 El flujo génico
3.4 Mutación
3.5 Endogamia/sistemas reproductivos |
| 4 | Evolución fenotípica
4.1 Genética cuantitativa, mapeo de caracteres y desequilibrio de ligamiento
4.2 La heredabilidad y la respuesta a la selección
4.3 Selección en poblaciones naturales
4.4 Selección Sexual y fenómenos relacionados |
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Adaptación</td>
</tr>
<tr>
<td>5.1</td>
<td>El modelo del “Shifting balance” de Wright</td>
</tr>
<tr>
<td>5.2</td>
<td>Selección y adaptación</td>
</tr>
<tr>
<td>5.3</td>
<td>El “programa adaptacionista”</td>
</tr>
<tr>
<td>5.4</td>
<td>Niveles de selección</td>
</tr>
<tr>
<td>6</td>
<td>Especiación</td>
</tr>
<tr>
<td>6.1</td>
<td>Conceptos de especie</td>
</tr>
<tr>
<td>6.2</td>
<td>Aspectos genéticos y ecológicos de la especiación</td>
</tr>
<tr>
<td>6.3</td>
<td>Mecanismos y barreras al flujo génico</td>
</tr>
<tr>
<td>6.4</td>
<td>Modelo alopatrício de especiación</td>
</tr>
<tr>
<td>6.5</td>
<td>Modelo simpátrico de especiación</td>
</tr>
<tr>
<td>6.6</td>
<td>Otros modelos e hibridación</td>
</tr>
<tr>
<td>7</td>
<td>Introducción a la evolución molecular</td>
</tr>
<tr>
<td>7.1</td>
<td>La teoría Neutra de Kimura</td>
</tr>
<tr>
<td>7.2</td>
<td>Tasas de sustitución y relojes moleculares</td>
</tr>
<tr>
<td>7.3</td>
<td>Reconstrucción filogenética</td>
</tr>
<tr>
<td>8</td>
<td>Macrovolutión</td>
</tr>
<tr>
<td>8.1</td>
<td>Especiación vs. extinción</td>
</tr>
<tr>
<td>8.2</td>
<td>Ontogenia y filogenia</td>
</tr>
<tr>
<td>8.3</td>
<td>Tasas de evolución morfológicas</td>
</tr>
<tr>
<td>8.4</td>
<td>Gradualismo vs. saltacionismo</td>
</tr>
<tr>
<td>9</td>
<td>Polémicas en evolución</td>
</tr>
<tr>
<td>9.1</td>
<td>Evolución del Desarrollo</td>
</tr>
<tr>
<td>9.2</td>
<td>Epigenética</td>
</tr>
<tr>
<td>9.3</td>
<td>Simbiógenesis</td>
</tr>
<tr>
<td>9.4</td>
<td>Diseño inteligente, mutación dirigida y otras discusiones populares</td>
</tr>
</tbody>
</table>

Bibliografía Básica:
Bibliografía Complementaria:

Sugerencias didácticas:

Exposición oral	(X)
Exposición audiovisual	(X)
Ejercicios dentro de clase	(X)
Ejercicios fuera del aula	
Seminarios	(X)
Lecturas obligatorias	(X)
Trabajo de Investigación	
Prácticas de taller o laboratorio	
Prácticas de campo	
Otros:	

Mecanismos de evaluación de aprendizaje de los alumnos:

Exámenes Parciales	(X)
Examen final escrito	
Trabajos y tareas fuera del aula	(X)
Exposición de seminarios por los alumnos	(X)
Participación en clase	(X)
Asistencia	
Seminario	(X)
Otras:	

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en evolución, así como tener experiencia docente.
Denominación: **Evolución del Desarrollo**

Clave: Semestre(s): 1
Campo de Conocimiento: Biología Evolutiva
No. Créditos: 8

Carácter: Optativo de elección
Tiempo: Horas
Horas por semana: 4
Horas al Semestre: 64

Tipo: Teórica
Teoría: 4
Práctica: 0

Modalidad: Curso
Duración del programa: Semestral

Seriación:
Sin Seriación (X)
Obligatoria ()
Indicativa ()

Objetivo general:
Ligar el entendimiento de la evolución de los genes y de los fenotipos y de cómo el cambio en los primeros se mapea en un cambio de los segundos.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Teóricas</td>
</tr>
<tr>
<td>1</td>
<td>Introducción</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Biología evolutiva del desarrollo (evo-devo): definición, alcances, y relaciones interteóricas con otros campos de investigación en biología evolutiva y biología del desarrollo</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>Evo-devo (y aproximaciones complementarias) en grupos taxonómicos y/o sistemas modelo en Metazoa: casos selectos</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Evo-Devo en Spermatophyta</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Evo-devo en Homo sapiens, homínidos, y otros primates. Perspectivas teóricas y empíricas conjuntas con la aproximación NCT sobre la evolución y el desarrollo de la especie humana durante el Pleistoceno y el Holoceno (incluyendo domesticación de plantas y animales, y la construcción del nicho planetario contemporáneo)</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Recapitulación y conclusiones</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Suma total de horas:</td>
<td>64</td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td></td>
<td>Estado actual de los estudios sobre ontogenia y filogenia en las ciencias de la vida del siglo XXI: una perspectiva general.</td>
</tr>
<tr>
<td>2</td>
<td>Biología evolutiva del desarrollo (evo-devo): definición, alcances, y relaciones interteóricas con otros campos de investigación en biología evolutiva y biología del desarrollo</td>
</tr>
<tr>
<td></td>
<td>2.1. El descubrimiento de los genes homeóticos en sistemas modelo animales y vegetales: la definición estrecha de la biología evolutiva del desarrollo (evo-devo)</td>
</tr>
<tr>
<td></td>
<td>2.2. Precursores teóricos de la evo-devo: marcos de referencia historiográficos y epistemológicos</td>
</tr>
<tr>
<td></td>
<td>2.3. ¿Cómo delimitar a la biología evolutiva del desarrollo? La propuesta pluralista de Gerd Müller sobre la estructura teórica de evo-devo</td>
</tr>
<tr>
<td></td>
<td>2.4. Aproximaciones teóricas y empíricas complementarias a evo-devo: “eco-evo-devo”; filogenómica del desarrollo y epigenética; “teoría de sistemas en desarrollo” (“developmental systems theory”; DST); evolución en cuatro dimensiones; teoría de construcción de nicho (“niche construction theory”; NCT)</td>
</tr>
<tr>
<td></td>
<td>2.5. Evo-devo e investigación inter- y multidisciplinaria en biología</td>
</tr>
<tr>
<td>3</td>
<td>Evo-devo (y aproximaciones complementarias) en grupos taxonómicos y/o sistemas modelo en Metazoa: casos selectos</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>4</td>
<td>Evo-Devo en Spermatophyta</td>
</tr>
<tr>
<td>5</td>
<td>Evo-devo en Homo sapiens, homínidos, y otros primates. Perspectivas teóricas y empíricas conjuntas con la aproximación NCT sobre la evolución y el desarrollo de la especie humana durante el Pleistoceno y el Holoceno (incluyendo domesticación de plantas y animales, y la construcción del nicho planetario contemporáneo)</td>
</tr>
<tr>
<td>6</td>
<td>Recapitulación y conclusiones. Interacciones inter- y multidisciplinarias entre la biología evolutiva del desarrollo, aproximaciones complementarias, y otros temas en el horizonte contemporáneo de las ciencias de la vida. Entrega de ensayos finales y prospectos para ediciones posteriores del curso</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

este libro tiene múltiples ediciones previas, varias de las cuales son de utilidad para este curso

Hall BK, Olson WM (2006, eds) *Keywords and Concepts in Evolutionary Developmental Biology*. Oxford U Press

Bertossa RC (2011, ed) *Evolutionary developmental biology (evo-devo) and behavior*. *Phil Trans Royal Soc B* 366:2056-2180

before its divergence from a closely related taxon, Triuris brevistylis.

Bibliografía Complementaria:

<table>
<thead>
<tr>
<th>Sugerencias didácticas:</th>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral</td>
<td>Exámenes Parciales</td>
</tr>
<tr>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td>Examen final escrito</td>
</tr>
<tr>
<td>(X)</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>Trabajos y tareas fuera del aula</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>Exposición de seminarios por los alumnos</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>Seminarios</td>
<td>Participación en clase</td>
</tr>
<tr>
<td>(X)</td>
<td>(X)</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>Asistencia</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>Señinario</td>
</tr>
<tr>
<td>()</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>Otras:</td>
</tr>
<tr>
<td>()</td>
<td></td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td></td>
</tr>
<tr>
<td>()</td>
<td></td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Perfíl profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en evolución del desarrollo, así como tener experiencia docente.
Denominación: **FILOGEOGRAFÍA**

<table>
<thead>
<tr>
<th>Clave:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semestre(s):</td>
<td>1</td>
</tr>
<tr>
<td>Campo de Conocimiento:</td>
<td>Biología Evolutiva, Sistemática</td>
</tr>
<tr>
<td>No. Créditos:</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carácter:</th>
<th>Optativo de elección</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horas</td>
<td></td>
</tr>
<tr>
<td>Horas por semana</td>
<td>Horas al Semestre</td>
</tr>
<tr>
<td>Teoría:</td>
<td>4</td>
</tr>
<tr>
<td>Práctica:</td>
<td>0</td>
</tr>
</tbody>
</table>

Tipo: Teórica
Modalidad: Curso
Duración del programa: Semestral

Sериación:
Sin Sериación (X) Obligatoria () Indicativa ()

Objetivo general:
Realizar en su proyecto de investigación métodos de análisis genético-poblacionales y filogenéticos y su aplicación en filogeografía, así como probar hipótesis relacionadas con la historia evolutiva de las especies.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teóricas</td>
</tr>
<tr>
<td>1</td>
<td>Introducción Ecología molecular</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Principios de coalescencia</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Métodos de análisis</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Ejemplos y estudios de caso</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>Aplicaciones y extensiones de la filogeografía</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>64</td>
</tr>
</tbody>
</table>

Suma total de horas: 64

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
<th></th>
</tr>
</thead>
</table>
| 1 | Introducción Ecología molecular
1.1. Historia, bases y conceptos generales
1.2. Relación con otras áreas (biogeografía, paleobiología, sistemática, conservación)
1.3. Herramientas moleculares
1.4. Bases metodológicas en filogenia y genética de poblaciones |
| 2 | Principios de coalescencia
2.1. Estructura espacial de las poblaciones
2.2. Matrilineas poblacionales
2.3. Coalescencia y ramificación
2.4. Genealogías y geografía |
| 3 | Métodos de análisis
3.1. Métodos filogenéticos
3.2. Métodos genético-poblacionales y espaciales
3.3. Computaciones bayesianas aproximadas y skyline plots
3.4. Estadística filogeográfica |
| 4 | Ejemplos y estudios de caso
4.1. Estructura filogeográfica
4.2. Inferencias demográficas
4.3. Filogeografía comparada
4.4. Estadística filogeográfica II |
| 5 | Aplicaciones y extensiones de la filogeografía
5.1. Sistemática
5.2. Adaptación y especiación
5.3. Conservación
5.4. Genética del paisaje y nicho ecológico |

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Exposición oral</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición audiovisual</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>()</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>()</td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X)</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>()</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

<table>
<thead>
<tr>
<th>Exámenes Parciales</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examen final escrito</td>
<td>()</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
<td>(X)</td>
</tr>
<tr>
<td>Participación en clase</td>
<td>()</td>
</tr>
<tr>
<td>Asistencia</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminario</td>
<td>()</td>
</tr>
<tr>
<td>Otras: Trabajo final</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en filogeografía, así como tener experiencia docente.
Denominación: GENÉTICA CUANTITATIVA Y ECOLOGICA

Clave: Semestre(s): 1 Campo de Conocimiento: Biología Evolutiva No. Créditos: 8

Carácter: Optativo de elección Horas Horas por semana Horas al Semestre
Tipo: Teórica Teoría: 4 Práctica: 0 4 64
Modalidad: Curso Duración del programa: Semestral

Seriación: Sin Seriación (X) Obligatoria () Indicativa ()

Objetivos:
El curso tiene como objetivos principales que el estudiante del Posgrado en Ciencias Biológicas interesado en la evolución fenotípica y en la adaptación,
Conozca y domine las bases conceptuales de la biología evolutiva y del estudio de la evolución fenotípica por selección natural.
Que conozca y aplique las metodologías de la genética cuantitativa y el análisis estadístico, en el estudio genético y ecológico de los caracteres fenotípicos de relevancia adaptativa en las poblaciones silvestres.
Que el alumno se inicie en las labores de investigación a través de la búsqueda de información en la materia, especializada, reciente, la realización de experimentos, del análisis de datos reales, y de la escritura de reportes a manera de artículos científicos.

Indice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>El estudio de la evolución en acción</td>
</tr>
<tr>
<td></td>
<td>Darwin: Teoría de la Evolución</td>
</tr>
<tr>
<td></td>
<td>Eclipse del Darwinismo: Biometristas y Mendelistas</td>
</tr>
<tr>
<td></td>
<td>Origen de la Genética de Poblaciones</td>
</tr>
<tr>
<td></td>
<td>¿Qué es la Genética Ecológica?</td>
</tr>
<tr>
<td></td>
<td>Norma de Reacción, Fenotipo-Genotipo</td>
</tr>
<tr>
<td></td>
<td>Primeros Estudios de Selección Natural</td>
</tr>
<tr>
<td></td>
<td>Teoría Sintética de la Evolución</td>
</tr>
<tr>
<td>2</td>
<td>Síntesis de genética de las poblaciones naturales</td>
</tr>
<tr>
<td></td>
<td>2.1 Genética de poblaciones: variación genética, ley de Hardy-Weinberg</td>
</tr>
<tr>
<td></td>
<td>2.2 Procesos evolutivos integrados</td>
</tr>
<tr>
<td></td>
<td>2.3 Diferenciación entre poblaciones: Genes neutros</td>
</tr>
<tr>
<td>3</td>
<td>Genética cuantitativa I</td>
</tr>
<tr>
<td></td>
<td>3.1 Variación: fenotipo-genotipo</td>
</tr>
<tr>
<td></td>
<td>3.2 Caracteres métricos</td>
</tr>
<tr>
<td></td>
<td>3.3 Valor reproductivo (el modelo aditivo)</td>
</tr>
<tr>
<td></td>
<td>3.4 Descomposición de la variación</td>
</tr>
<tr>
<td></td>
<td>3.5 Semeljanza fenotípica entre parientes</td>
</tr>
<tr>
<td></td>
<td>3.6 Heredabilidad (h2)</td>
</tr>
<tr>
<td></td>
<td>3.7 Métodos para estimar parámetros de genética cuantitativa. mínimos cuadrados y máxima verosimilitud</td>
</tr>
</tbody>
</table>

Contenido Temático
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
</table>
| 4 | Genética cuantitativa II
| | 4.1 Plasticidad fenotípica--normas de reacción
| | 4.2 Interacción genotipo–ambiente
| | 4.3 Correlación entre ambientes |
| 5 | Genética cuantitativa III
| | 5.1 Selección natural en caracteres cuantitativos
| | 5.2 Selección dependiente de la frecuencia
| | 5.3 Selección en ambientes heterogéneos
| | 5.4 Correlaciones genéticas
| | 5.5 Selección correlativa y multivariada
| | 5.6 Evolución de la matriz varianza–covarianza (G)
| | 5.7 Divergencia adaptativa y restricciones genéticas |
| 6 | Tópicos contemporáneos de genética cuantitativa y evolución
| | 6.1 Mejoramiento animal y vegetal
| | 6.2 Domesticación
| | 6.3 Evolución de la resistencia a biocidas
| | 6.4 Especies invasoras
| | 6.5 Genómica de la adaptación |

Bibliografía Básica:

Bibliografía Complementaria:
- Kingsolver et. al. 2001. The Strength of Phenotypic Selection in Natural Populations. The American Naturalist 157:

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Exposición oral</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición audiovisual</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X)</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>()</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exámenes Parciales</td>
</tr>
<tr>
<td>Examen final escrito</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
</tr>
<tr>
<td>Participación en clase</td>
</tr>
<tr>
<td>Asistencia</td>
</tr>
<tr>
<td>Seminario</td>
</tr>
<tr>
<td>Otras: Ensayo</td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en genética cuantitativa y ecológica, así como tener experiencia docente.
GENÉTICA DE LA CONSERVACIÓN

Denominación: GENÉTICA DE LA CONSERVACIÓN
Clave: Semestre(s): 1 Campo de Conocimiento: Biología Evolutiva No. Créditos: 8
Carácter: Optativo de elección Horas Horas por semana Horas al Semestre
Tipo: Teórica Teoría: 4 Práctica: 0 4 64
Modalidad: Curso Duración del programa: Semestral

Objetivo general:
El curso pretende que el estudiante del Posgrado en Ciencias Biológicas entienda los principios básicos de genética de la conservación.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Teóricas</td>
</tr>
<tr>
<td>1</td>
<td>Introducción</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Caracterización de la diversidad genética: loci simple</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Evolución en poblaciones</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Pérdida de diversidad genética</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Diversidad genética y extinción</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Manejo de poblaciones</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Suma total de horas:</td>
<td>64</td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td>1.1</td>
<td>Conceptos básicos</td>
</tr>
<tr>
<td>1.2</td>
<td>Definición de ideas</td>
</tr>
<tr>
<td>1.3</td>
<td>Escalas y filosofía de la conservación</td>
</tr>
<tr>
<td>2</td>
<td>Caracterización de la diversidad genética: loci simple</td>
</tr>
<tr>
<td>2.1</td>
<td>Frecuencia de alelos y fenotipos</td>
</tr>
<tr>
<td>2.2</td>
<td>Equilibrio de Hardy-Weinberg</td>
</tr>
<tr>
<td>2.3</td>
<td>Heterocigosidad esperada</td>
</tr>
<tr>
<td>2.4</td>
<td>Desviaciones y extensiones al equilibrio de Hardy-Weinberg</td>
</tr>
<tr>
<td>2.5</td>
<td>Como medir diversidad genética</td>
</tr>
<tr>
<td>2.6</td>
<td>Importancia de la diversidad genética</td>
</tr>
<tr>
<td>2.7</td>
<td>Diversidad genética en especies con ciclo de vida complejo</td>
</tr>
<tr>
<td>3</td>
<td>Evolución en poblaciones</td>
</tr>
<tr>
<td>3.1</td>
<td>Factores que controlan la evolución en poblaciones</td>
</tr>
<tr>
<td>3.2</td>
<td>Selección con caracteres cuantitativos</td>
</tr>
<tr>
<td>3.3</td>
<td>Selección direccional, disruptiva y estabilizadora</td>
</tr>
<tr>
<td>3.4</td>
<td>Origen y regeneración de la diversidad genética</td>
</tr>
<tr>
<td>3.5</td>
<td>Balance entre selección y mutación</td>
</tr>
<tr>
<td>3.6</td>
<td>Equilibrio entre selección y migración</td>
</tr>
<tr>
<td>4</td>
<td>Pérdida de diversidad genética</td>
</tr>
<tr>
<td>4.1</td>
<td>Cambios en la diversidad</td>
</tr>
<tr>
<td>4.2</td>
<td>Efecto del tamaño poblacional en la pérdida de adecuación y diversidad genética</td>
</tr>
<tr>
<td>4.3</td>
<td>Tamaño efectivo de la población</td>
</tr>
<tr>
<td>4.4</td>
<td>Consecuencias genéticas de la endogamia</td>
</tr>
<tr>
<td>4.5</td>
<td>Endogamia en pequeñas poblaciones</td>
</tr>
<tr>
<td>4.6</td>
<td>Endogamia y depresión exogámica en poblaciones fragmentadas</td>
</tr>
<tr>
<td>4.7</td>
<td>Depresión endogámica debido al tamaño de la población y extinción</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| 5 | Diversidad genética y extinción
5.1 Relación entre pérdida de diversidad genética y extinción
5.2 Endogamia y extinción: relación y cómo medirlas en campo
5.3 Baja variabilidad genética en especies en peligro de extinción
5.4 Variabilidad genética entre especies |
| 6 | Manejo de poblaciones
6.1 Resolviendo inconsistencias taxonómicas
6.1.1 ¿Qué es una especie?
6.1.2 Construyendo árboles filogenéticos
6.1.3 Definiendo unidades de manejo dentro de especies
6.2 Manejo de poblaciones en campo
6.2.1 Incremento del tamaño de la población
6.2.2 Recuperación y manejo de poblaciones fragmentadas
6.2.3 Destrucción del hábitat y límites para recuperar especies amenazadas
6.2.4 Especies nocivas: invasoras e introducidas
6.2.5 Diseño de reservas
6.3 Manejo de poblaciones en cautiverio
6.3.1 Fundadores de poblaciones en cautiverio
6.3.2 Manejo en cautiverio de grupos |

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
Exposición oral (X)
Exposición audiovisual (X)
Ejercicios dentro de clase (X)
Ejercicios fuera del aula ()
Seminarios (X)
Lecturas obligatorias ()
Trabajo de Investigación ()
Prácticas de taller o laboratorio ()
Prácticas de campo ()
Otros: ()

Mecanismos de evaluación de aprendizaje de los alumnos:
- Exámenes Parciales (X)
- Examen final escrito (X)
- Trabajos y tareas fuera del aula (X)
- Participación en clase (X)
- Asistencia ()
- Seminario ()
- Otras: Elaboración de ensayo sobre artículos que se discutirá en clase.

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en genética de la conservación, así como tener experiencia docente.
Denominación: GENÉTICA DE POBLACIONES
Clave: Semestre(s): 1
Campo de Conocimiento: Biología Evolutiva
No. Créditos: 8
Carácter: Optativo de elección
Horas por semana: 4
Horas al Semestre: 64
Tipo: Teórica
Teoría: 4
Práctica: 0
Modalidad: Curso
Duración del programa: Semestral
Seriación: Sin Seriación (X)
Objetivo general: Entender los principios de la genética de poblaciones, desde sus bases clásicas hasta los desarrollos más recientes, revisando rigurosamente tanto la teoría como los patrones empíricos.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
<th>Teóricas</th>
<th>Prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción a la Genética de poblaciones</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>El estudio de la variación en las poblaciones naturales y la ley del equilibrio de Hardy-Weinberg</td>
<td>8</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>La selección natural</td>
<td>8</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>La endogamia</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>La deriva génica y el tamaño efectivo de las poblaciones</td>
<td>8</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>El flujo génico y la estructura de las poblaciones</td>
<td>8</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>La mutación</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Modelos de varios genes</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Genética de poblaciones molecular</td>
<td>8</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suma total de horas:</td>
<td>64</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
</table>
| 1 | Introducción a la Genética de poblaciones
1.1 Objetivos y metas de la genética de poblaciones
1.2 Historia de la genética de poblaciones y de la evolución molecular
1.3 Repaso de genética clásica y molecular |
| 2 | El estudio de la variación en las poblaciones naturales y la ley del equilibrio de Hardy-Weinberg
2.1 Marcadores morfológicos
2.2 Alozimas/ Isozimas
2.3 Variación a nivel ADN: métodos moleculares (i.e., RFLPs, PCR, clonación, secuencias, RAPDs, AFLPs, microsatélites, etc.) y patrones
2.4 La ley del equilibrio de Hardy-Weinberg
2.5 Complicaciones a Hardy-Weinberg: Diferencias entre sexos, genes ligados al sexo y más de dos alelos
2.6 El problema de la estimación empírica de las frecuencias alélicas
2.7 Medidas de variación genética y de distancia genética |
| 3 | La selección natural
3.1 Diferentes tipos de selección natural
3.2 El modelo básico de selección
3.3 Complicaciones al modelo básico: genes ligados al sexo y alelos múltiples
3.4 Selección en viabilidad
3.5 Selección sexual y apareamiento clasificado negativo (negative assortative mating)
3.6 Selección gamética y alelos de incompatibilidad
3.7 El problema de estimar la intensidad de la selección en el campo
3.8 Modelos ecológicos, variación espacial y temporal y selección dependiente de la frecuencia |
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>La endogamia</td>
</tr>
<tr>
<td></td>
<td>4.1 El coeficiente de endogamia y el equilibrio de Hardy-Weinberg</td>
</tr>
<tr>
<td></td>
<td>4.2 Autofertilización total y parcial: teoría y estimaciones</td>
</tr>
<tr>
<td></td>
<td>4.3 Estimación de la endogamia a partir de pedigrí</td>
</tr>
<tr>
<td></td>
<td>4.4 La endogamia en las poblaciones naturales</td>
</tr>
<tr>
<td></td>
<td>4.5 La "depresión" por endogamia</td>
</tr>
<tr>
<td></td>
<td>4.6 "Kin selection"</td>
</tr>
<tr>
<td></td>
<td>4.7 Reproducción asexual</td>
</tr>
<tr>
<td>5</td>
<td>La derivación génica y el tamaño efectivo de las poblaciones</td>
</tr>
<tr>
<td></td>
<td>5.1 ¿Qué es la derivación génica?</td>
</tr>
<tr>
<td></td>
<td>5.2 Un enfoque de matrices de transición</td>
</tr>
<tr>
<td></td>
<td>5.3 Efecto de fundador y cuellos de botella</td>
</tr>
<tr>
<td></td>
<td>5.4 El tamaño efectivo de las poblaciones, definiciones y métodos ecológicos y genéticos para su estimación</td>
</tr>
<tr>
<td></td>
<td>5.5 Deriva génica y selección natural</td>
</tr>
<tr>
<td></td>
<td>5.6 El balance entre la selección y la mutación</td>
</tr>
<tr>
<td></td>
<td>5.7 El efecto de los alelos en los heterocigotos</td>
</tr>
<tr>
<td></td>
<td>5.8 Evolución en ambientes heterogéneos</td>
</tr>
<tr>
<td></td>
<td>5.9 El balance entre la selección y la derivación génica</td>
</tr>
<tr>
<td></td>
<td>5.10 El coalescente con selección: modelos y parámetros</td>
</tr>
<tr>
<td></td>
<td>5.11 Resolución de problemas. Examen 3</td>
</tr>
<tr>
<td>6</td>
<td>El flujo génico y la estructura de las poblaciones</td>
</tr>
<tr>
<td></td>
<td>6.1 El modelo contiente-islas de flujo génico</td>
</tr>
<tr>
<td></td>
<td>6.2 El efecto Wahlund</td>
</tr>
<tr>
<td></td>
<td>6.3 Estimaciones directas e indirectas de flujo génico</td>
</tr>
<tr>
<td></td>
<td>6.4 Los estadísticos F de Wright</td>
</tr>
<tr>
<td></td>
<td>6.5 Flujo génico y derivación</td>
</tr>
<tr>
<td></td>
<td>6.6 Flujo génico y selección</td>
</tr>
<tr>
<td>7</td>
<td>La mutación</td>
</tr>
<tr>
<td></td>
<td>7.1 Historia natural de la mutación</td>
</tr>
<tr>
<td></td>
<td>7.2 Modelos básicos de mutación</td>
</tr>
<tr>
<td></td>
<td>7.3 Balance selección-mutación</td>
</tr>
<tr>
<td></td>
<td>7.4 Mutación en poblaciones finitas: el modelo de alelos infinitos y el modelo de mutaciones por pasos</td>
</tr>
<tr>
<td></td>
<td>7.5 El problema de la estimación de las tasas de mutación</td>
</tr>
<tr>
<td>8</td>
<td>Modelos de varios genes</td>
</tr>
<tr>
<td></td>
<td>8.1 El desequilibrio de ligamiento I: teoría básica y métodos de estimación</td>
</tr>
<tr>
<td></td>
<td>8.2 El desequilibrio de ligamiento II: relación con las fuerzas evolutivas</td>
</tr>
<tr>
<td></td>
<td>8.3 Selección en varios genes</td>
</tr>
<tr>
<td></td>
<td>8.4 Hitchhiking</td>
</tr>
<tr>
<td></td>
<td>8.5 Recombinación, sexualidad, “Muller ratchet”, y selección de fondo</td>
</tr>
<tr>
<td>9</td>
<td>Genética de poblaciones molecular</td>
</tr>
<tr>
<td></td>
<td>9.1 Estimación de variación genética a nivel molecular</td>
</tr>
<tr>
<td></td>
<td>9.2 El modelo de sitios infinitos</td>
</tr>
<tr>
<td></td>
<td>9.3 La prueba de Tajima y otras pruebas relacionadas</td>
</tr>
<tr>
<td></td>
<td>9.4 La prueba de Ewens-Watterson</td>
</tr>
<tr>
<td></td>
<td>9.5 Pruebas HKA y MK</td>
</tr>
<tr>
<td></td>
<td>9.6 Filogeografía</td>
</tr>
<tr>
<td></td>
<td>9.7 Análisis de paternidad</td>
</tr>
<tr>
<td></td>
<td>9.8 ADN fósil</td>
</tr>
<tr>
<td></td>
<td>9.9 Sesgo en el uso de los codones</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exámenes Parciales (X)</td>
</tr>
<tr>
<td>Examen final escrito ()</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula (X)</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos ()</td>
</tr>
<tr>
<td>Participación en clase ()</td>
</tr>
<tr>
<td>Asistencia ()</td>
</tr>
<tr>
<td>Seminario ()</td>
</tr>
<tr>
<td>Otras: Otros: trabajo semenstral ()</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perfil profesiográfico:</th>
</tr>
</thead>
<tbody>
<tr>
<td>El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en genética de poblaciones, así como tener experiencia docente.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sugerencias didácticas:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral (x)</td>
</tr>
<tr>
<td>Exposición audiovisual (x)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase (x)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula (x)</td>
</tr>
<tr>
<td>Seminarios (x)</td>
</tr>
<tr>
<td>Lecturas obligatorias (x)</td>
</tr>
<tr>
<td>Trabajo de Investigación ()</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio ()</td>
</tr>
<tr>
<td>Prácticas de campo ()</td>
</tr>
<tr>
<td>Otros: ()</td>
</tr>
</tbody>
</table>
Denominación:
GENETICA DEL PAISAJE

<table>
<thead>
<tr>
<th>Clave:</th>
<th>Semestre(s): 1</th>
<th>Campo de Conocimiento:</th>
<th>Biología Evolutiva</th>
<th>No. Créditos: 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carácter:</td>
<td>Optativo de elección</td>
<td>Horas</td>
<td>Horas por semana</td>
<td>Horas al Semestre</td>
</tr>
<tr>
<td>Tipo:</td>
<td>Teórica</td>
<td>Teoría: 4</td>
<td>Práctica: 0</td>
<td>4</td>
</tr>
<tr>
<td>Modalidad:</td>
<td>Curso</td>
<td>Duración del programa: Semestral</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seriación:
- Sin Seriación (X)
- Obligatoria ()
- Indicativa ()

Objetivo general:
Este curso presenta en detalle los avances en el estudio de la genética del paisaje. El curso pretende proporcionar al alumno las herramientas para analizar críticamente los artículos sobre el tema y para poder plantear proyectos y análisis en el área. El curso va dirigido a aquellos estudiantes que se interesen en la temática de ecología y genética, además de aplicaciones en conservación.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Teóricas</td>
</tr>
<tr>
<td>1</td>
<td>Introducción</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Revisión de aspectos teóricos</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Antecedentes y métodos de análisis</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Ejemplos y aplicaciones</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Genética del paisaje y conservación</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Suma total de horas:</td>
<td>64</td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td>1.1</td>
<td>Biodiversidad</td>
</tr>
<tr>
<td>1.2</td>
<td>Fuerzas evolutivas</td>
</tr>
<tr>
<td>1.3</td>
<td>Evolución en poblaciones pequeñas</td>
</tr>
<tr>
<td>1.4</td>
<td>Fragmentación y flujo genético</td>
</tr>
<tr>
<td>2</td>
<td>Revisión de aspectos teóricos</td>
</tr>
<tr>
<td>2.1</td>
<td>Ecología del paisaje</td>
</tr>
<tr>
<td>2.2</td>
<td>Dispersión y migración</td>
</tr>
<tr>
<td>2.3</td>
<td>Enfoques de la genética del paisaje</td>
</tr>
<tr>
<td>2.4</td>
<td>Genética del paisaje y evolución</td>
</tr>
<tr>
<td>3</td>
<td>Antecedentes y métodos de análisis</td>
</tr>
<tr>
<td>3.1</td>
<td>Estructura genético-poblacional</td>
</tr>
<tr>
<td>3.2</td>
<td>Dispersión, flujo genético y migrantes</td>
</tr>
<tr>
<td>3.3</td>
<td>Métodos exploratorios, estadísticos y de agrupación</td>
</tr>
<tr>
<td>3.4</td>
<td>Correlación genética y factores del paisaje</td>
</tr>
<tr>
<td>3.5</td>
<td>Enfoques espaciales y de modelaje</td>
</tr>
<tr>
<td>3.6</td>
<td>Adaptación y genética del paisaje</td>
</tr>
<tr>
<td>3.7</td>
<td>Patrones genéticos y su correlación con paisaje</td>
</tr>
<tr>
<td>4</td>
<td>Ejemplos y aplicaciones</td>
</tr>
<tr>
<td>4.1</td>
<td>Ejemplos con flora</td>
</tr>
<tr>
<td>4.2</td>
<td>Ejemplos con fauna</td>
</tr>
<tr>
<td>4.3</td>
<td>Perspectivas de la genética del paisaje</td>
</tr>
<tr>
<td>5</td>
<td>Genética del paisaje y conservación</td>
</tr>
<tr>
<td>5.1</td>
<td>Conceptos básicos</td>
</tr>
<tr>
<td>5.2</td>
<td>Definición e ideas sobre la conservación</td>
</tr>
<tr>
<td>5.3</td>
<td>Escalas y filosofía de la conservación</td>
</tr>
</tbody>
</table>

Bibliografía Básica:
berán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en genética del paisaje, así como tener experiencia docente.

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en genética del paisaje, así como tener experiencia docente.

<table>
<thead>
<tr>
<th>Sugerencias didácticas:</th>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral</td>
<td>Exámenes Parciales</td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td>Examen final escrito</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>Trabajos y tareas fuera del aula (X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>Exposición de seminarios por los alumnos (X)</td>
</tr>
<tr>
<td>Seminarios</td>
<td>Participación en clase</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>Asistencia (X)</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>Seminarío ()</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>Otras: Proyecto de investigación o revisión</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td></td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Bibliografía Complementaria:

Verity R, Nichols RA. 2014. What is genetic differentiation, and how should we measure it - GST, D, neither or both? *Molecular Ecology* en prensa.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción a la historia y la historiografía de la ciencia</td>
</tr>
<tr>
<td></td>
<td>1.1 Presentismo, anacronismo e historia whiggish</td>
</tr>
<tr>
<td></td>
<td>1.2 Externalismo e internalismo</td>
</tr>
<tr>
<td>2</td>
<td>Los estudios sociales de la ciencia</td>
</tr>
<tr>
<td></td>
<td>2.1 El programa fuerte de la sociología de la ciencia: el principio de simetría</td>
</tr>
<tr>
<td></td>
<td>2.2 El estudio de los debates y controversias en la ciencia (Collins, Pinch, Pickering)</td>
</tr>
<tr>
<td></td>
<td>2.3 Los estudios sociales de la ciencia: Shapin; Desmond y Moore</td>
</tr>
<tr>
<td></td>
<td>2.4 La teoría de las redes de actantes de Bruno Latour</td>
</tr>
<tr>
<td>3</td>
<td>El desarrollo de la Teoría de la Selección Natural y su recepción</td>
</tr>
<tr>
<td></td>
<td>3.1 La situación de la biología en la primera mitad del siglo XIX</td>
</tr>
<tr>
<td></td>
<td>3.2 El contexto de la ciencia británica en el periodo victoriano</td>
</tr>
<tr>
<td></td>
<td>3.3 Las evidencias y los argumentos de Darwin: El viaje en El Beagle, la relación con los criadores y agricultores, la sistemática de los percebes</td>
</tr>
<tr>
<td></td>
<td>3.4 La ausencia de una teoría de la herencia y la variación</td>
</tr>
<tr>
<td></td>
<td>3.5 La metodología de la vera causa y la teoría de la selección natural (la naturaleza de las explicaciones científicas)</td>
</tr>
<tr>
<td></td>
<td>3.6 La recepción de la teoría de Darwin en Inglaterra y otros países</td>
</tr>
<tr>
<td>4</td>
<td>Los orígenes de la genética y la genética de poblaciones</td>
</tr>
<tr>
<td></td>
<td>4.1 Galton y la escuela biométrica: los principios teóricos de una biología de poblaciones</td>
</tr>
<tr>
<td></td>
<td>4.2 El uso “progresista” de la ciencia: el movimiento de eugenésia</td>
</tr>
<tr>
<td></td>
<td>4.3 El mendelismo: Mendel, Bateson, y el “redescubrimiento”</td>
</tr>
<tr>
<td></td>
<td>4.4 La escuela de Morgan: la genética experimental</td>
</tr>
<tr>
<td></td>
<td>4.5 La construcción de un organismo experimental: Drosophila melanogaster</td>
</tr>
<tr>
<td></td>
<td>4.6 La genética de poblaciones. Fisher, haldane y Wright</td>
</tr>
<tr>
<td></td>
<td>4.7 Algunos temas de la relación entre bioética y genética a la luz del Proyecto</td>
</tr>
<tr>
<td></td>
<td>4.8 Genoma Humano</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td>5</td>
<td>Física</td>
</tr>
<tr>
<td></td>
<td>5.1 Gases, rayos, corpúsculos</td>
</tr>
<tr>
<td></td>
<td>5.2 Modelos atómicos</td>
</tr>
<tr>
<td></td>
<td>5.3 Rutherford y el núcleo</td>
</tr>
<tr>
<td></td>
<td>5.4 La radiación del cuerpo negro</td>
</tr>
<tr>
<td></td>
<td>5.5 El fotón</td>
</tr>
<tr>
<td>6</td>
<td>Mecánica cuántica</td>
</tr>
<tr>
<td></td>
<td>6.1 Bohr y la interpretación de Copenhagen</td>
</tr>
<tr>
<td></td>
<td>6.2 Física nuclear</td>
</tr>
<tr>
<td></td>
<td>6.3 Estados Unidos en crecimiento</td>
</tr>
<tr>
<td></td>
<td>6.4 La física en Europa durante los años 30</td>
</tr>
<tr>
<td></td>
<td>6.5 La bomba atómica</td>
</tr>
<tr>
<td></td>
<td>6.6 Nuevos laboratorios e instrumentos</td>
</tr>
<tr>
<td></td>
<td>6.7 Física de partículas y altas energías</td>
</tr>
<tr>
<td></td>
<td>6.8 Teorías de Unificación</td>
</tr>
<tr>
<td></td>
<td>6.9 Física en crisis</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Exposición oral</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición audiovisual</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>()</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>()</td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X)</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>()</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>()</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

<table>
<thead>
<tr>
<th>Exámenes Parciales</th>
<th>()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examen final escrito</td>
<td>()</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
<td>()</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
<td>()</td>
</tr>
<tr>
<td>Participación en clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Asistencia</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminario</td>
<td>()</td>
</tr>
<tr>
<td>Otras:</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesoras deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en historia y filosofía de la ciencia, así como tener experiencia docente.
METODO COMPARATIVO

<table>
<thead>
<tr>
<th>Denominación:</th>
<th>METODO COMPARATIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clave:</td>
<td>Semestre(s): 1</td>
</tr>
<tr>
<td>Carácter:</td>
<td>Optativo de elección</td>
</tr>
<tr>
<td>Horas</td>
<td>Teoría: 2</td>
</tr>
<tr>
<td>Horas por semana</td>
<td>Práctica: 2</td>
</tr>
<tr>
<td>Horas al Semestre</td>
<td>4</td>
</tr>
<tr>
<td>No. Créditos:</td>
<td>8</td>
</tr>
</tbody>
</table>

Campo de Conocimiento: Biología Evolutiva, Sistemática

Objetivo general:
El curso tiene como objetivo brindar las bases para que los alumnos interpretan patrones filogenéticos en un contexto moderno, con énfasis en los hallazgos y avances conceptuales que han cuestionado cada punto de la Síntesis Moderna.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Superando la síntesis moderna</td>
</tr>
<tr>
<td></td>
<td>1.1 Introducción</td>
</tr>
<tr>
<td></td>
<td>Estructura y planteamiento del curso. Repaso de ideas clave de la sistemática filogenética. La generación de preguntas de interés general, el planteamiento de hipótesis y cómo someterlas a prueba con objetivos y metas claros. El cuadro de la Síntesis Moderna y la biología evolutiva actual</td>
</tr>
<tr>
<td></td>
<td>1.2 Posiciones conceptuales. Conceptos de los taxones mayores; taxonomía vs. sistemática; taxonomía evolutiva, fenética, cladismo; ¿qué representan los árboles filogenéticos?; esencialismo, tipología y sesgos cognitivos</td>
</tr>
<tr>
<td></td>
<td>1.3 Conceptos de especie. ¿Cuáles son algunas de las ideas del estatus de especies como individuos? Esta sección no se trata de una revisión comprehensiva de los conceptos de especie sino que serve para contrastar ideas sobre la “individualidad” de las especies. El debate sobre la naturaleza ontológica de las especies sigue, pero como veremos más adelante, si es posible considerarlas como individuos, las implicaciones para el estudio de macroevolución son muy extensas</td>
</tr>
<tr>
<td></td>
<td>1.4 El Darwinismo de la Síntesis Moderna. Las modificaciones a la teoría evolutiva que veremos en el resto del curso son en gran parte una reacción a las carencias del cuadro presentado en la Síntesis Moderna</td>
</tr>
<tr>
<td></td>
<td>1.5 Trabajo sobre el primer borrador del escrito semestral (resúmenes de los proyectos de tesis) y preparación para el examen</td>
</tr>
<tr>
<td></td>
<td>1.6 Primer examen parcial</td>
</tr>
<tr>
<td>2</td>
<td>Macroevolución</td>
</tr>
<tr>
<td></td>
<td>2.1 ¿Cuál es el nivel en donde opera la selección natural? ¿Qué es un “individuo” en términos evolutivos? Intactores, replicadores, vehículos, etc.</td>
</tr>
<tr>
<td></td>
<td>2.2 Macroevolución y propiedades emergentes por encima del nivel de la especie</td>
</tr>
<tr>
<td></td>
<td>2.3 Reduccionismo gen-céntrico vs. interaccionismo y emergencia: Gould y Dawkins ya no parecen tan distintos...(teoría de los sistemas del desarrollo y la herencia extendida)</td>
</tr>
<tr>
<td></td>
<td>2.4 Estructura jerárquica de la historia biológica</td>
</tr>
<tr>
<td></td>
<td>2.5 Equilibrios puntuados: patrón vs. proceso; adaptacionismo vs. “sorteo” y selección de especies</td>
</tr>
</tbody>
</table>
Unidad | Tema y Subtemas
--- | ---
3 | Homología: la base de la biología comparativa
3.1 Homología vs. tipología: homología táctica vs. transformacional
3.2 Las “bases biológicas” de homología. ¿Por qué la homología?
3.3 Congruencia y similitud
3.4 Modularidad. Importancia y causas
3.5 La otra cara de la homología. Disyuntivas en la asignación de recursos (tradeoffs) y restricciones ontogenéticas
3.6 Entrega del segundo examen parcial
4 | Adaptaición y el método comparativo
4.1 Adaptaición por selección natural: argumentos tradicionales (convergencia y optimalidad)
4.2 Adaptación por selección natural: críticas clásicas
4.3 El argumento a partir de convergencia en su forma moderna: el método comparativo filogenético
4.4 El método comparativo filogenético, otras técnicas
4.5 ¿Cómo medir la diversidad? ¿De dónde viene? Escenarios simplistas vs. complejidad histórica
5 | Acabando con la síntesis: la evolución
5.1 Inducción, deducción o abducción: ¿Cuál es la estructura inferencial de la biología evolutiva? Clase impartida por el Dr. Alfonso Arroyo Santos
5.2 Invirtiendo la Síntesis Moderna (ó: Ontogenia y evolución post-Síntesis: ¿Dónde han estado toda mi vida?)
5.3 Propiedades emergentes de sistemas complejos
5.4 Paralelismo, homología y la adaptación; Evo-devo y homología

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
- Exposición oral
- Exposición audiovisual
- Ejercicios dentro de clase
- Ejercicios fuera del aula
- Seminarios
- Lecturas obligatorias
- Trabajo de Investigación
- Prácticas de taller o laboratorio
- Otros:

Mecanismos de evaluación de aprendizaje de los alumnos:
- Exámenes Parciales
- Examen final escrito
- Trabajos y tareas fuera del aula
- Exposición de seminarios por los alumnos
- Participación en clase
- Asistencia
- Seminario
- Otras: Ensayo

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en método comparativo, así como tener experiencia docente.
Denominación: BIOLOGÍA DEL DESARROLLO EN PLANTAS
Clave:
Campo de Conocimiento: Biología Evolutiva y Ecología
No. Créditos: 8
Carácter: Optativo de elección
Tipo: Teórica
Modalidad: Curso
Duración del programa: Semestral

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción a la célula vegetal</td>
</tr>
</tbody>
</table>
| 2 | Ciclo celular, replicación, regulación transcripcional y epigenética
2.1 Proliferación y diferenciación celular
2.2 Ciclo celular
2.3 Replicación del DNA
2.4 Genes de diferenciación celular de plantas
2.5 Regulación transcripcional. Mecanismos y proteínas que participan en este proceso
2.6 Regulación Epigenética. Estructura de la cromatina, modificaciones del DNA y las histonas. Complejos TrxG y PcG |
| 3 | Gametogénesis, desarrollo embrionario y germinación
3.1 Fecundación, desarrollo del embrión y germinación |
| 4 | Desarrollo de los órganos aéreos de la planta
4.1 Tipos celulares y genes que participan en su estructura
4.2 Fotomorfogénesis. Fotorreceptores y ciclo circadiano
4.3 Tiempo de Floración. Transición del estado vegetativo al reproductivo
4.4 Especificación del meristemo floral y órganos florales
4.5 Desarrollo del meristemo floral, modelo ABC y organogénesis |
| 5 | Desarrollo de la raíz
5.1 Desarrollo y estructura celular en el eje radial y longitudinal |

Objetivo general: Conocer, analizar y criticar algunos de los principales conceptos, teorías y modelos de la Ecología Conductual; además, revisar, evaluar y criticar los métodos que se usan para hacer investigación.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas por semana</th>
<th>Horas al Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción a la célula vegetal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ciclo celular, replicación, regulación transcripcional y epigenética</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Gametogénesis, desarrollo embrionario y germinación</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Desarrollo de los órganos aéreos de la planta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Desarrollo de la raíz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Evolución y desarrollo, métodos formales para el análisis de redes</td>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

Total de horas: 64
Suma total de horas: 64
Unidad 6

Tema y Subtemas
5.2 Características de las células troncales de la raíz y su función
5.3 Las hormonas y su participación en el desarrollo de la raíz. Importancia de las hormonas para el desarrollo de la raíz
5.4 Regulación transcripcional en la raíz

Evolución y desarrollo, métodos formales para el análisis de redes
6.1 Evo-devo y enfoques teóricos: Panorama general
6.2 Métodos formales para el análisis de redes regulatorias. Retos de la biología integrativa
6.3 Impactos de la integración de genes en el metabolismo y desarrollo vegetal

Bibliografía Básica:

Bibliografía Complementaria:
- Hennig and Derkacheva (2009). Diversity of Polycomb group complexes in plants: same rules, different players?
<table>
<thead>
<tr>
<th>Sugerencias didácticas:</th>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral (X)</td>
<td>Exámenes Parciales (X)</td>
</tr>
<tr>
<td>Exposición audiovisual (X)</td>
<td>Examen final escrito (X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase ()</td>
<td>Trabajos y tareas fuera del aula ()</td>
</tr>
<tr>
<td>Ejercicios fuera del aula ()</td>
<td>Exposición de seminarios por los alumnos ()</td>
</tr>
<tr>
<td>Seminarios (X)</td>
<td>Participación en clase (X)</td>
</tr>
<tr>
<td>Lecturas obligatorias (X)</td>
<td>Asistencia (X)</td>
</tr>
<tr>
<td>Trabajo de Investigación ()</td>
<td>Seminario ()</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio ()</td>
<td>Otras: Ensayo (2)</td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biología del desarrollo en plantas, así como tener experiencia docente.
Denominación:
METODOS DE RECONSTRUCCION FILOGENETICA

Clave:

| Semestre(s): | 1 |

Campo de Conocimiento:
Biología Evolutiva, Sistemática

No. Créditos:
8

Carácter:
Optativo de elección

Horas

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Teoría</th>
<th>Práctica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teoría:</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Práctica:</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Horas por semana

| 4 |

Horas al Semestre

| 64 |

Modalidad:
Curso | Duración del programa: Semestral

Seriación:
Sin Seriación (X) Obligatoria () Indicativa ()

Objetivo general:
Que el alumno comprenda los fundamentos teóricos de las escuelas de sistemática filogenética y sea capaz de formular e interpretar hipótesis de relaciones filogenéticas y evolutivas entre taxones, empleando para ello los principales programas de cómputo.

Que el alumno conozca los principales métodos de reconstrucción filogenética empleados en la actualidad, así como la relevancia del enfoque filogenético para la sistemática y otras disciplinas biológicas.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td>1.1</td>
<td>Sistemática y Taxonomía: conceptos generales; la sistemática como disciplina en la Biología</td>
</tr>
<tr>
<td>1.2</td>
<td>Historia de la Sistemática: breve historia de las clasificaciones biológicas</td>
</tr>
<tr>
<td>1.3</td>
<td>Filosofías en la reconstrucción filogenética: Evolucionismo, Feneticismo, Cladismo y Uso de Modelos Evolutivos</td>
</tr>
</tbody>
</table>

2	Conceptos de especie y modelos de especiación
2.1	Nominalismo vs. realismo
2.2	Conceptos de especie (tipológico, paleontológico, biológico, evolutivo, filogenético, entre otros)
2.3	Anagénesis y cladogénesis
2.4	Modelos de especiación: alopátrida, simpátrida, parapátrida, peripátrida

3	Taxones supraespecíficos
3.1	Conceptos
3.2	Grupos monofiléticos, parafiléticos y polifiléticos

4	Homología
4.1	Definición de homología
4.2	Establecimiento de hipótesis de homología primaria (reglas para su postulación: conjunción, similitud y congruencia)

| Total de horas: | 32 |

<p>| Suma total de horas: | 64 |</p>
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Homología secundaria</td>
</tr>
<tr>
<td>4.4</td>
<td>Tipos de homología: apomorfías (autopomorfía, sinapomorfía), plesiomorfías (simplesiomorfía)</td>
</tr>
<tr>
<td>4.5</td>
<td>Homoplasia</td>
</tr>
<tr>
<td>5</td>
<td>Caracteres</td>
</tr>
<tr>
<td>5.1</td>
<td>Caracteres, estados de carácter; series de transformación y polaridad</td>
</tr>
<tr>
<td>5.2</td>
<td>Tipos de caracteres organismicos (continuos, discontinuos; binarios, multiestado; morfológicos, ecológicos, etológicos)</td>
</tr>
<tr>
<td>5.3</td>
<td>Caracteres moleculares. Alineamiento de secuencias de ADN</td>
</tr>
<tr>
<td>5.4</td>
<td>Ventajas y desventajas de los diferentes tipos de caracteres</td>
</tr>
<tr>
<td>6</td>
<td>Unidades terminales y taxones</td>
</tr>
<tr>
<td>6.1</td>
<td>Muestreo de terminales (individuos, poblaciones, especies, taxones supraespecíficos, genes, etc.).</td>
</tr>
<tr>
<td>6.2</td>
<td>Muestreo de taxones: Grupo interno y externo</td>
</tr>
<tr>
<td>6.3</td>
<td>Análisis de datos por separado vs. análisis simultáneos</td>
</tr>
<tr>
<td>6.4</td>
<td>Problema de datos faltantes</td>
</tr>
<tr>
<td>7</td>
<td>Método de parsimonia</td>
</tr>
<tr>
<td>7.1</td>
<td>Conceptos generales</td>
</tr>
<tr>
<td>7.2</td>
<td>Argumentación Hennigiana</td>
</tr>
<tr>
<td>7.3</td>
<td>Optimización de caracteres: Wagner, Fitch, Dollo, Sankoff</td>
</tr>
<tr>
<td>7.4</td>
<td>Estadísticas de los árboles (longitud, índices de consistencia, retención y re-escalado)</td>
</tr>
<tr>
<td>7.5</td>
<td>Tipos de búsqueda exhaustivas y exactas (enumeración implícita, branch & amp; bound)</td>
</tr>
<tr>
<td>7.6</td>
<td>Búsqueda heurística (NNI, SPR, TBR, parsimonia de matriz y nueva tecnología)</td>
</tr>
<tr>
<td>7.7</td>
<td>Medidas de apoyo de las ramas (bootstrap, Jackknife, soporte de Bremer)</td>
</tr>
<tr>
<td>7.8</td>
<td>Árboles de consenso y compromiso</td>
</tr>
<tr>
<td>7.9</td>
<td>Ventajas y desventajas del método de parsimonia</td>
</tr>
<tr>
<td>8</td>
<td>Métodos de distancia</td>
</tr>
<tr>
<td>8.1</td>
<td>Conceptos generales</td>
</tr>
<tr>
<td>8.2</td>
<td>Métodos de distancia (NJ, UPGMA)</td>
</tr>
<tr>
<td>9</td>
<td>Métodos probabilísticos basados en modelos</td>
</tr>
<tr>
<td>9.1</td>
<td>Conceptos generales</td>
</tr>
<tr>
<td>9.2</td>
<td>Uso de modelos de evolución: Pruebas de saturación, selección de modelos (Modeltest), parámetros, análisis con particiones y selección de estrategias de partición de datos</td>
</tr>
<tr>
<td>9.3</td>
<td>Criterios de optimización: máxima verosimilitud e inferencia Bayesiana</td>
</tr>
<tr>
<td>9.4</td>
<td>Inferencia Bayesiana: número de generaciones en un análisis, muestreo de árboles de la distribución posterior (método MCMC), determinación del ‘burn-in’</td>
</tr>
<tr>
<td>9.5</td>
<td>Resumiendo la distribución posterior: probabilidades Bayesinas posteriores</td>
</tr>
<tr>
<td>9.6</td>
<td>Ventajas y desventajas de los métodos probabilísticos</td>
</tr>
<tr>
<td>10</td>
<td>Aplicaciones de las hipótesis filogenéticas</td>
</tr>
<tr>
<td>10.1</td>
<td>Fechamiento de clados, reconstrucción de caracteres ancestrales</td>
</tr>
<tr>
<td>10.2</td>
<td>Clasificaciones taxonómicas y nomenclatura</td>
</tr>
<tr>
<td>10.3</td>
<td>Adaptación, exaptación y coevolución</td>
</tr>
<tr>
<td>10.4</td>
<td>Biogeografía</td>
</tr>
<tr>
<td>10.5</td>
<td>Diversidad y conservación</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:
<table>
<thead>
<tr>
<th>Sugerencias didácticas:</th>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral (X)</td>
<td>Exámenes Parciales (X)</td>
</tr>
<tr>
<td>Exposición audiovisual (X)</td>
<td>Examen final escrito (X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase (X)</td>
<td>Trabajos y tareas fuera del aula (X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula ()</td>
<td>Exposición de seminarios por los alumnos (X)</td>
</tr>
<tr>
<td>Seminarios (X)</td>
<td>Participación en clase (X)</td>
</tr>
<tr>
<td>Lecturas obligatorias (X)</td>
<td>Asistencia (X)</td>
</tr>
<tr>
<td>Trabajo de Investigación (X)</td>
<td>Seminario (X)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio (X)</td>
<td>Otras:</td>
</tr>
<tr>
<td>Prácticas de campo ()</td>
<td></td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:
El profesor o profesoras deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en métodos de reconstrucción filogenética, así como tener experiencia docente.
Denominación:
EXPRESIÓN GENÉTICA, REGULACIÓN METABÓLICA, Y ASPECTOS EVOLUTIVOS

Clave:
Semestre(s): 1
Campo de Conocimiento: Biología Evolutiva, Biomedicina y Biología Experimental
No. Créditos: 8

Carácter:
Optativo de elección

Tipo:
Teórica
Teoría: 4
Práctica: 0
Horas por semana: 4
Horas al Semestre: 64

Modalidad:
Curso
Duración del programa: Semestral

Seriación:
Sin Seriación (X)
Obligatoria ()
Indicativa ()

Objetivo general:
Que el alumno comprenda la relación entre el metabolismo y la regulación genética con un enfoque evolutivo.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Teóricas</th>
<th>Prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Regulación Metabólica</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Sensores y Transducción de señales</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Señalización y Transcripción</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Regulación Epigenética</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Efectos sobre el Metabolismo</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Sistemas Complejos</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Simposio de Fin de Curso</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Total de horas: 64
Suma total de horas: 64

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td>1.1</td>
<td>Estrategia para abordar los aspectos evolutivos del metabolismo y la expresión génica</td>
</tr>
<tr>
<td>2</td>
<td>Regulación Metabólica</td>
</tr>
<tr>
<td>2.1</td>
<td>Regulación metabólica y control genético: dos partes de un mismo proceso</td>
</tr>
<tr>
<td>3</td>
<td>Sensores y Transducción de señales</td>
</tr>
<tr>
<td>4</td>
<td>Señalización y transcripción</td>
</tr>
<tr>
<td>5</td>
<td>Regulación epigenética</td>
</tr>
<tr>
<td>5.1</td>
<td>miRNAs</td>
</tr>
<tr>
<td>5.2</td>
<td>Cromatina e histonas</td>
</tr>
<tr>
<td>6</td>
<td>Efectos sobre el Metabolismo</td>
</tr>
<tr>
<td>6.1</td>
<td>Nutrientes</td>
</tr>
<tr>
<td>6.2</td>
<td>Diabetes y síndrome metabólico</td>
</tr>
<tr>
<td>6.3</td>
<td>Cáncer</td>
</tr>
<tr>
<td>7</td>
<td>Sistemas Complejos</td>
</tr>
<tr>
<td>8</td>
<td>Simposio de Fin de Curso</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

- http://www.nature.com/msb/journal/v2/n1/full/msb4100080.html
- http://tbiomed.com/content/3/1/13

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exámenes Parciales (x)</td>
</tr>
<tr>
<td>Examen final escrito ()</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula (x)</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos (x)</td>
</tr>
<tr>
<td>Participación en clase (X)</td>
</tr>
<tr>
<td>Asistencia (X)</td>
</tr>
<tr>
<td>Seminario ()</td>
</tr>
<tr>
<td>Otras: Ensayo (2)</td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en genética, regulación metabólica y aspectos evolutivos, así como tener experiencia docente.

<table>
<thead>
<tr>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exámenes Parciales (x)</td>
</tr>
<tr>
<td>Examen final escrito ()</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula (x)</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos (x)</td>
</tr>
<tr>
<td>Participación en clase (X)</td>
</tr>
<tr>
<td>Asistencia (X)</td>
</tr>
<tr>
<td>Seminario ()</td>
</tr>
<tr>
<td>Otras: Ensayo (2)</td>
</tr>
</tbody>
</table>
Campo de Conocimiento: Biología Experimental
El objetivo de este curso es que el estudiante del Posgrado en Ciencias Biológicas pueda mediante la descripción y análisis de los procesos biológicos, en términos biofísicos y fisicoquímicos entender la fisiología celular de los organismos.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conceptos de Termodinámica</td>
</tr>
<tr>
<td></td>
<td>1.1 Primer principio</td>
</tr>
<tr>
<td></td>
<td>1.1.1 Microestados y entropía: fórmula de Boltzmann</td>
</tr>
<tr>
<td></td>
<td>1.1.2 Distribución de partículas con la altura</td>
</tr>
<tr>
<td></td>
<td>1.1.3 Sistemas isotérmicos: factor de Boltzmann</td>
</tr>
<tr>
<td></td>
<td>1.2 Segundo principio y los sistemas biológicos</td>
</tr>
<tr>
<td></td>
<td>1.2.1 Potenciales termodinámicos: la energía libre de Gibbs</td>
</tr>
<tr>
<td></td>
<td>1.2.2 Potencial químico</td>
</tr>
<tr>
<td>2</td>
<td>Difusión</td>
</tr>
<tr>
<td></td>
<td>2.1 Cinética molecular</td>
</tr>
<tr>
<td></td>
<td>2.2 Movimiento browniano</td>
</tr>
<tr>
<td></td>
<td>2.3 Difusión de gases</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Ley de Fick</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Coeficiente de difusión de macromoléculas en solución</td>
</tr>
<tr>
<td></td>
<td>2.3.3 Difusión y flujo de materia</td>
</tr>
<tr>
<td>3</td>
<td>Membranas celulares</td>
</tr>
<tr>
<td></td>
<td>3.1 Lípidos de membranas</td>
</tr>
<tr>
<td></td>
<td>3.2 Proteínas de membrana</td>
</tr>
<tr>
<td></td>
<td>3.3 Función de las membranas biológicas</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>4</td>
<td>Transporte</td>
</tr>
<tr>
<td></td>
<td>4.1 Transporte pasivo a través de membranas</td>
</tr>
<tr>
<td></td>
<td>4.1.1 Osmosis</td>
</tr>
<tr>
<td></td>
<td>4.1.2 Presión osmótica</td>
</tr>
<tr>
<td></td>
<td>4.1.3 Permeabilidad de las membranas</td>
</tr>
<tr>
<td></td>
<td>4.1.4 Coeficientes de filtración mecánica y de permeabilidad</td>
</tr>
<tr>
<td></td>
<td>4.2 Transporte activo</td>
</tr>
<tr>
<td></td>
<td>4.2.1 Transporte facilitado y activo</td>
</tr>
<tr>
<td></td>
<td>4.2.2 Uniporte, simporte y antiporte</td>
</tr>
<tr>
<td></td>
<td>4.2.3 Bombas electrogénicas</td>
</tr>
<tr>
<td></td>
<td>4.3 Canales iónicos y su dinámica</td>
</tr>
<tr>
<td>5</td>
<td>Electro difusión a través de membranas</td>
</tr>
<tr>
<td></td>
<td>5.1 Electrolitos en disolución</td>
</tr>
<tr>
<td></td>
<td>5.2 Equilibrio de Donnan</td>
</tr>
<tr>
<td></td>
<td>5.3 Equilibrio electroquímico: potencial de Nernst</td>
</tr>
<tr>
<td></td>
<td>5.4 Movilidad de iones en disolución</td>
</tr>
<tr>
<td></td>
<td>5.5 Estados estacionarios en membranas</td>
</tr>
<tr>
<td></td>
<td>5.6 Aproximación de campo eléctrico constante</td>
</tr>
<tr>
<td></td>
<td>5.7 Potencial de Goldman-Hodgkin-Katz</td>
</tr>
<tr>
<td>6</td>
<td>Modelos eléctricos de las membranas</td>
</tr>
<tr>
<td></td>
<td>6.1 Capacidad específica de la membrana</td>
</tr>
<tr>
<td></td>
<td>6.2 Resistencia de la membrana</td>
</tr>
<tr>
<td></td>
<td>6.3 Medidas de potencial y de intensidades</td>
</tr>
<tr>
<td></td>
<td>6.4 Circuito equivalente al transporte pasivo de iones</td>
</tr>
<tr>
<td></td>
<td>6.5 Circuitos equivalentes para el transporte facilitado y activo</td>
</tr>
<tr>
<td>7</td>
<td>Biofísica de la actividad eléctrica en células excitables: el sistema nervioso</td>
</tr>
<tr>
<td></td>
<td>7.1 Potenciales de acción</td>
</tr>
<tr>
<td></td>
<td>7.2 Modelo del cable para el axón</td>
</tr>
<tr>
<td></td>
<td>7.3 Propagación de un potencial de acción</td>
</tr>
<tr>
<td></td>
<td>7.4 Modelos de excitación de la bicapa lipídica</td>
</tr>
<tr>
<td></td>
<td>7.5 Esquema del modelo de Hodgkin-Huxley</td>
</tr>
<tr>
<td></td>
<td>7.6 Umbrales de excitación</td>
</tr>
<tr>
<td>8</td>
<td>Comunicación celular</td>
</tr>
<tr>
<td></td>
<td>8.1 Transducción de señales</td>
</tr>
<tr>
<td></td>
<td>8.2 Calci como mensajero intracelular</td>
</tr>
<tr>
<td></td>
<td>8.3 Regulación celular por el calcio extracelular</td>
</tr>
<tr>
<td>9</td>
<td>Producción de energía y metabolismo</td>
</tr>
<tr>
<td></td>
<td>9.1 Almacenamiento de energía</td>
</tr>
<tr>
<td></td>
<td>9.2 Metabolismo anaeróbico</td>
</tr>
<tr>
<td></td>
<td>9.3 Metabolismo aeróbico</td>
</tr>
<tr>
<td></td>
<td>9.4 Integración y regulación de las vías metabólicas</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
Exposición oral (X)
Exposición audiovisual (X)
Ejercicios dentro de clase ()
Ejercicios fuera del aula ()
Seminarios (X)
Lecturas obligatorias ()
Trabajo de Investigación ()
Prácticas de taller o laboratorio ()
Prácticas de campo ()
Otros: ()

Mecanismos de evaluación de aprendizaje de los alumnos:
Exámenes Parciales (X)
Examen final escrito ()
Trabajos y tareas fuera del aula ()
Exposición de seminarios por los alumnos (X)
Participación en clase (X)
Asistencia ()
Seminario ()
Otras: ()

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biofísica y fisiología celular, así como tener experiencia docente.
DENOMINACIÓN: BIOLOGÍA CELULAR
Clave: Semestre(s): 1 Campo de Conocimiento: Biología Experimental No. Créditos: 8
Carácter: Optativo de elección Horas Horas por semana Horas al Semestre
Tipo: Teórica Teoría: 4 Práctica: 0 4 64
Modalidad: Curso Duración del programa: Semestral

SERIACIÓN: Sin Seriación (X) Obligatoria () Indicativa ()

OBJETIVO GENERAL:
El alumno integrará los conocimientos estructurales, bioquímicos, moleculares y funcionales de los organelos a la luz del conocimiento del genoma.

ÍNDICE TEMÁTICO

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Membranas Biológicas</td>
</tr>
<tr>
<td>1.1</td>
<td>Estructura de membrana</td>
</tr>
<tr>
<td>1.2</td>
<td>Transporte transmembranal</td>
</tr>
<tr>
<td>2</td>
<td>Núcleo celular</td>
</tr>
<tr>
<td>2.1</td>
<td>Ribonucleoproteínas</td>
</tr>
<tr>
<td>2.2</td>
<td>Nucleólo</td>
</tr>
<tr>
<td>3</td>
<td>Ciclo celular</td>
</tr>
<tr>
<td>3.1</td>
<td>Interfase</td>
</tr>
<tr>
<td>3.2</td>
<td>División</td>
</tr>
<tr>
<td>3.3</td>
<td>Mitosis</td>
</tr>
<tr>
<td>3.4</td>
<td>Meiosis</td>
</tr>
<tr>
<td>4</td>
<td>Retículo endoplásmico</td>
</tr>
<tr>
<td>4.1</td>
<td>Rugoso</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Modificaciones postraduccionales</td>
</tr>
<tr>
<td>4.2</td>
<td>Peroxisomas</td>
</tr>
<tr>
<td>4.3</td>
<td>Liso</td>
</tr>
<tr>
<td>5</td>
<td>Aparato de Golgi</td>
</tr>
<tr>
<td>5.1</td>
<td>Funciones</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Modificaciones postraduccionales</td>
</tr>
<tr>
<td>5.2</td>
<td>Productos</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Lisosomas</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Vesículas de secreción</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Vesículas de membrana</td>
</tr>
<tr>
<td>6</td>
<td>Matriz extracelular</td>
</tr>
<tr>
<td>6.1</td>
<td>Matriz Componentes</td>
</tr>
</tbody>
</table>

Contenido Temático
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Funciones</td>
</tr>
<tr>
<td></td>
<td>Procesos de membrana</td>
</tr>
<tr>
<td></td>
<td>7.1 Endocitosis</td>
</tr>
<tr>
<td></td>
<td>7.2 Exocitosis</td>
</tr>
<tr>
<td>8</td>
<td>Citoesqueleto</td>
</tr>
<tr>
<td></td>
<td>8.1 Microfilamentos</td>
</tr>
<tr>
<td></td>
<td>8.2 Filamentos intermedios</td>
</tr>
<tr>
<td></td>
<td>8.3 Microtúbulos</td>
</tr>
<tr>
<td></td>
<td>8.4 Otros</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
- Exposición oral (X)
- Exposición audiovisual (X)
- Ejercicios dentro de clase ()
- Ejercicios fuera del aula ()
- Seminarios ()
- Lecturas obligatorias ()
- Trabajo de Investigación (X)
- Prácticas de taller o laboratorio ()
- Prácticas de campo ()
- Otros: ()

Mecanismos de evaluación de aprendizaje de los alumnos:
- Exámenes Parciales (X)
- Examen final escrito ()
- Trabajos y tareas fuera del aula ()
- Exposición de seminarios por los alumnos ()
- Participación en clase ()
- Asistencia ()
- Seminario ()
- Otras: EXPOSICIÓN DE ARTÍCULOS.

Perfil profesiográfico:
El profesor o profesoras deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biología celular, así como tener experiencia docente.
Denominación: BIOLOGÍA DEL DESARROLLO
Clave:
Semestre(s): 1
Campo de Conocimiento: Biología Experimental, Biomedicina
No. Créditos: 8
Carácter: Optativo de elección
Horas
No. Créditos:
Tipo: Teórica
Teoría: 4
Práctica: 0
Horas por semana
Horas al Semestre
Modalidad: Curso
Duración del programa: Semestral
Seriación: Sin Seriación (X)
Obligatoria ()
Indicativa ()
Objetivo general: Comprender los principales procesos de determinación, diferenciación, formación de patrones corporales, morfogénesis y organogénesis durante el desarrollo ontogénico y sus bases moleculares.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td></td>
<td>1. Introducción</td>
</tr>
<tr>
<td></td>
<td>1.1. Términos y planos anatómicos</td>
</tr>
<tr>
<td></td>
<td>1.2. Etapas del desarrollo ontogenético</td>
</tr>
<tr>
<td></td>
<td>1.2.1. Características principales de cada etapa</td>
</tr>
<tr>
<td></td>
<td>1.3. Conceptos de morfogénesis, especificación y diferenciación regional, histogénesis y organogénesis</td>
</tr>
<tr>
<td>2</td>
<td>Desarrollo regulado y en mosaico</td>
</tr>
<tr>
<td></td>
<td>2.1. Preformismo y epigénesis</td>
</tr>
<tr>
<td></td>
<td>2.2. Bases experimentales</td>
</tr>
<tr>
<td></td>
<td>2.3. Estrategias del desarrollo en protostomados y deuterostomados</td>
</tr>
<tr>
<td></td>
<td>2.4. Áreas presuntivas organoformadoras: significado y potencialidad prospectivos</td>
</tr>
<tr>
<td></td>
<td>2.5. Concepto general de campos morfogenéticos</td>
</tr>
<tr>
<td>3</td>
<td>Mecanismos básicos del desarrollo</td>
</tr>
<tr>
<td></td>
<td>3.1. Control espacio temporal de la proliferación, muerte (apoptosis), migración y cambios de forma celulares</td>
</tr>
<tr>
<td></td>
<td>3.2. Vías de señalización en el desarrollo</td>
</tr>
<tr>
<td></td>
<td>3.2.1. Moléculas reguladoras: nogggin, cordina, folistatina, cerberus, nodal, Frzb, otras</td>
</tr>
<tr>
<td></td>
<td>3.2.2. Superfamilia del TGF b (nodal, left)</td>
</tr>
<tr>
<td></td>
<td>3.2.3. Wnt</td>
</tr>
<tr>
<td></td>
<td>3.2.4. Proteínas morfogenéticas de hueso (BMP)</td>
</tr>
<tr>
<td></td>
<td>3.3. Movimientos morfogenéticos</td>
</tr>
</tbody>
</table>

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
<th>Teóricas</th>
<th>Prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Desarrollo regulado y en mosaico</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mecanismos básicos del desarrollo</td>
<td>9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Especificación y diferenciación de linajes celulares</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gastrulación y estructuración del eje antero-posterior y dorso-ventral</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Asimetría y estructuración derecho-izquierda</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Regionalización y desarrollo del sistema nervioso central (SNC)</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Estructuración dorso-ventral y antero posterior del mesodermo paraxial (somitogénesis)</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Organogénesis y desarrollo de los sistemas orgánicos</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Procesos de desarrollo postnatales</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Alteraciones del desarrollo</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Seminarios especiales</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>64</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suma total de horas:</td>
<td>64</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.1.</td>
<td>Clasificación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.2.</td>
<td>Cambios de forma y polaridad celular durante la migración</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.3.</td>
<td>Movimientos morfogenéticos en la gastrulación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.4.</td>
<td>En diversos procesos morfogenéticos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.5.</td>
<td>Participación de la matriz extracelular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.6.</td>
<td>Mecanismos que guían y regulan el destino de las células</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.7.</td>
<td>Propiedades de los campos morfogenéticos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.8.</td>
<td>Inducción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.9.</td>
<td>Cambios de forma y polaridad celular durante la migración</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.10.</td>
<td>Movimientos morfogenéticos en la gastrulación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.11.</td>
<td>En diversos procesos morfogenéticos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.12.</td>
<td>Participación de la matriz extracelular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.13.</td>
<td>Mecanismos que guían y regulan el destino de las células</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.14.</td>
<td>Propiedades de los campos morfogenéticos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.1.</td>
<td>Procesos morfogenéticos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.2.</td>
<td>Transformación epitelio mesénquima</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.3.</td>
<td>Morfogénesis por formación de yemas y ramificación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.4.</td>
<td>Propiedades de los campos morfogenéticos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.5.</td>
<td>Participación de la matriz extracelular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.6.</td>
<td>Mecanismos que guían y regulan el destino de las células</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.7.</td>
<td>Propiedades de los campos morfogenéticos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.8.</td>
<td>Inducción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.9.</td>
<td>Cambios de forma y polaridad celular durante la migración</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.10.</td>
<td>Movimientos morfogenéticos en la gastrulación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.11.</td>
<td>En diversos procesos morfogenéticos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.12.</td>
<td>Participación de la matriz extracelular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.13.</td>
<td>Mecanismos que guían y regulan el destino de las células</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.14.</td>
<td>Propiedades de los campos morfogenéticos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.1.</td>
<td>Inducción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.2.</td>
<td>Inducción secundaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.3.</td>
<td>Interacciones inductivas: célula-célula, célula-matriz extracelular, mediada por reguladores químicos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.4.</td>
<td>Interacción epitelio mesénquima</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.5.</td>
<td>Bases moleculares</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.6.</td>
<td>Diferenciación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.7.</td>
<td>Conceptos fundamentales: potencialidad, competencia, inducción, especificación, determinación y diferenciación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.8.</td>
<td>Proliferación y diferenciación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.9.</td>
<td>Relación núcleo-citoplasma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.10.</td>
<td>Programa del desarrollo y equivalencia genómica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.11.</td>
<td>Papel del “imprinting” genómico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.12.</td>
<td>Interacción epitelio mesénquima</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.13.</td>
<td>Bases moleculares</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.14.</td>
<td>Diferenciación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.15.</td>
<td>Conceptos fundamentales: potencialidad, competencia, inducción, especificación, determinación y diferenciación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.16.</td>
<td>Proliferación y diferenciación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.17.</td>
<td>Relación núcleo-citoplasma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.18.</td>
<td>Programa del desarrollo y equivalencia genómica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.19.</td>
<td>Papel del “imprinting” genómico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.20.</td>
<td>Interacción epitelio mesénquima</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.21.</td>
<td>Bases moleculares</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.22.</td>
<td>Diferenciación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6.1.</td>
<td>Especificación y diferenciación de linajes celulares</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6.2.</td>
<td>Linajes extraembrionarios: trofoblasto y endodermo primitivo, formación de la placenta y de las membranas extraembrionarias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6.3.</td>
<td>Especificación y migración de las células germinales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6.4.</td>
<td>Linajes estaminales en el embrión y después del nacimiento y sus aplicaciones terapéuticas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6.5.</td>
<td>Células endoteliales: vaculogénesis y angiogénesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6.6.</td>
<td>Desarrollo del músculo esquelético</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6.7.</td>
<td>Formación de cartílago y hueso</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6.8.</td>
<td>Establecimiento de linajes celulares, y seguimiento del linaje</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6.9.</td>
<td>Marcadores de estirpe celular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.</td>
<td>Linajes extraembrionarios: trofoblasto y endodermo primitivo, formación de la placenta y de las membranas extraembrionarias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.</td>
<td>Especificación y migración de las células germinales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3.</td>
<td>Linajes estaminales en el embrión y después del nacimiento y sus aplicaciones terapéuticas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.</td>
<td>Células endoteliales: vaculogénesis y angiogénesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.</td>
<td>Desarrollo del músculo esquelético</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.</td>
<td>Formación de cartílago y hueso</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.</td>
<td>Gastrulación y estructuración del eje antero-posterior y dorso-ventral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2.</td>
<td>Gastrulación y neureulación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3.</td>
<td>Estructuración del eje antero-posterior y dorso-ventral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4.</td>
<td>Estructuración del eje antero-posterior y dorso-ventral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5.</td>
<td>Organizador temprano de la gástrula (EGO) y endodermo visceral anterior (AVE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6.</td>
<td>Estructuras organizadoras: el organizador primario y centros organizadores en los vertebrados. Organizador temprano de la gástrula (EGO) y endodermo visceral anterior (AVE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.7.</td>
<td>Estudios genéticos y embriológicos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.8.</td>
<td>Inducción neural y epidérmica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9.</td>
<td>Inducción de distintos tipos de mesodermo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.10.</td>
<td>Especificación de la línea primitiva y organizador: rotación cortical y establecimiento de la zona de actividad dorsalizante</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1.</td>
<td>Asimetría morfológica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2.</td>
<td>Asimetría morfológica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3.</td>
<td>Asimetría morfológica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.4.</td>
<td>Asimetría morfológica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5.</td>
<td>Asimetría morfológica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1.</td>
<td>Regionalización y desarrollo del sistema nervioso central (SNC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.</td>
<td>Formación y desarrollo temprano del tubo neural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3.</td>
<td>Estructuración dorso ventral del SNC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4.</td>
<td>Interacciones inductivas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5.</td>
<td>Genes requeridos para la especificación regional del SNC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.6.</td>
<td>Neurogénesis y especificación de subtipos neuronales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.7.</td>
<td>Células troncales del SNC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.8.</td>
<td>Estructuración dorso-ventral y antero posterior del mesodermo paraxial (somitogénesis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1.</td>
<td>Desarrollo de los somitas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2.</td>
<td>Desarrollo de los somitas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.3.</td>
<td>Desarrollo de los somitas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.4.</td>
<td>Desarrollo de los somitas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5.</td>
<td>Estructuración dorsoventral de los somitas: formación y diferenciación del esclerotomo, dermatomiotomo y miotomo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.6.</td>
<td>Interacciones inductivas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.7.</td>
<td>Genes homeóticos y determinación de la estructura segmentaria del cuerpo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Organogénesis y desarrollo de los sistemas orgánicos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.1.</td>
<td>Secuencia de eventos: formación de primordios, especificación de tipos celulares, crecimiento y vascularización</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.2.</td>
<td>Mecanismos generales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.2.1.</td>
<td>Remodelado de tejidos progenitores: condensación de células y transformación epitelio mesénquima</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.2.2.</td>
<td>Morfogénesis por formación de yemas y ramificación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.2.3.</td>
<td>Compartamentalización funcional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.3.</td>
<td>Desarrollo del tubo digestivo y órganos asociados</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.4.</td>
<td>Desarrollo cardíaco y enfermedades congénitas del corazón</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.5.</td>
<td>Determinación y diferenciación sexual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.6.</td>
<td>Desarrollo del sistema excretor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.7.</td>
<td>Desarrollo cráneo-facial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.8.</td>
<td>Desarrollo de la hipófisis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.9.</td>
<td>Desarrollo del ojo y oído interno</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.10.</td>
<td>Desarrollo del sistema tegumentario</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Procesos de desarrollo postnatales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1.</td>
<td>Crecimiento</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1.1.</td>
<td>Mecanismos que determinan el tamaño de los órganos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1.2.</td>
<td>Determinación del tamaño corporal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.2.</td>
<td>Metamorfosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.3.</td>
<td>Cicatrización y regeneración</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.4.</td>
<td>Envejecimiento</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Alteraciones del desarrollo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.1.</td>
<td>Teratogénesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.2.</td>
<td>Carcinogénesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.3.</td>
<td>Enfermedades congénitas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Seminarios especiales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.1.</td>
<td>Programación fetal: origen embrionario/fetal de la enfermedad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2.</td>
<td>Desarrollo de tejidos u órganos por bioingeniería y su uso terapéutico</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:

- Exposición oral (X)
- Exposición audiovisual (X)
- Ejercicios dentro de clase ()
- Ejercicios fuera del aula ()
- Seminarios (X)
- Lecturas obligatorias (X)
- Trabajo de Investigación (X)
- Prácticas de taller o laboratorio ()
- Prácticas de campo ()
- Otros:

Mecanismos de evaluación de aprendizaje de los alumnos:

- Exámenes Parciales (X)
- Examen final escrito ()
- Trabajos y tareas fuera del aula (X)
- Exposición de seminarios por los alumnos (X)
- Participación en clase (X)
- Asistencia (X)
- Seminario ()
- Otras:

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biología del desarrollo, así como tener experiencia docente.
Programa de actividad académica

Denominación: BIOLOGÍA MOLECULAR
Clave:
Semestre(s): 1
Campo de Conocimiento: Biología Experimental, Biomedicina
No. Créditos: 8
Carácter: Optativo de elección
Horas por semana: Teoría: 4
Horas al Semestre: Práctica: 0
Tipo: Teórica
Modalidad: Curso
Duración del programa: Semestral

Seriación:
Sin Seriación (X)
Obligatoria ()
Indicativa ()

Objetivo general:
Al término del curso el alumno deberá estar familiarizado con las características de las moléculas fundamentales para la vida como son las proteínas y los ácidos nucleicos. Deberá también reconocer las interacciones que realizan estas moléculas entre sí para formar estructuras importantes en el mantenimiento, duplicación y replicación de la información genética.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
<th>Horas (Teorías)</th>
<th>Horas (Prácticas)</th>
</tr>
</thead>
</table>
| 1 | Introducción y antecedentes
1.1 Orígenes y desarrollo de la biología molecular. Aspectos históricos.
1.2 Aportaciones de la microbiología al desarrollo de la biología molecular. Organismos modelo como **Escherichia coli** y el uso de virus. | 4 | 0 |
| 2 | Bases fisicoquímicas de las macromoléculas
2.1 Enlaces débiles, enlaces covalentes y su importancia en la determinación de la estructura de las macromoléculas.
2.2 Estructura de las proteínas y de los ácidos nucleicos: componentes, subestructuras y complejos.
2.3 Métodos para determinar la estructura de proteínas (cristalográfía de rayos X, resonancia magnética nuclear).
2.4 Conocimiento de los bancos de datos de proteínas cristalizadas (Protein Data Bank, CATH, etc.). Uso de programas de computación como el SPDBV (Swiss PDB Viewer) para observar la estructura tridimensional de proteínas y ácidos nucléicos.
2.5 El nucleosoma y la estructura de la cromatina. Empaquetamiento de genes y formación de cromosomas. | 8 | 0 |

Total de horas: 64
Suma total de horas: 64
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Los dogmas centrales en la biología molecular: del gene a la proteína</td>
</tr>
<tr>
<td></td>
<td>3.1 Los flujos de información entre macromoléculas</td>
</tr>
<tr>
<td></td>
<td>3.2 El código genético</td>
</tr>
<tr>
<td></td>
<td>3.3 Concepto de gene. El genoma como reservorio de la información genética</td>
</tr>
<tr>
<td>4</td>
<td>Replicación, reparación y recombinación</td>
</tr>
<tr>
<td></td>
<td>4.1 Química de la síntesis del DNA. Las DNA polimerasas. Fidelidad de la replicación. Direccionalidad de la replicación. Inicio y término</td>
</tr>
<tr>
<td></td>
<td>4.2 Los virus de RNA. Replicasas del RNA</td>
</tr>
<tr>
<td></td>
<td>4.3 Reparación del DNA: daño ambiental y mecanismos de reparación</td>
</tr>
<tr>
<td></td>
<td>4.4 Recombinación homóloga. Conversión génica. El sistema Rec</td>
</tr>
<tr>
<td></td>
<td>4.5 Transposones y retroposones</td>
</tr>
<tr>
<td></td>
<td>4.6 Secuencias de inserción, Tns, elementos P, Ac/Ds y Ty</td>
</tr>
<tr>
<td></td>
<td>4.7 Plasticidad del genoma. Contenido de DNA. Paradoja del valor C</td>
</tr>
<tr>
<td>5</td>
<td>Genética Microbiana</td>
</tr>
<tr>
<td></td>
<td>5.1 El análisis genético en biología molecular. Notación, convenciones y terminología</td>
</tr>
<tr>
<td></td>
<td>5.2 Tipos de mutantes</td>
</tr>
<tr>
<td></td>
<td>5.3 Mutágenos. Genes mutadores. Hot spots</td>
</tr>
<tr>
<td></td>
<td>5.4 Mecanismos de transferencia de información genética en bacterias</td>
</tr>
<tr>
<td>6</td>
<td>Transcripción en organismos procariotes</td>
</tr>
<tr>
<td></td>
<td>6.1 Organización de los genes procariotes</td>
</tr>
<tr>
<td></td>
<td>6.2 RNA polimerasa y promotores</td>
</tr>
<tr>
<td></td>
<td>6.3 Regulación a nivel transcripcional</td>
</tr>
<tr>
<td></td>
<td>6.4 El modelo del operón</td>
</tr>
<tr>
<td></td>
<td>6.5 Regulación positiva y negativa. Represión catabólica</td>
</tr>
<tr>
<td></td>
<td>6.6 Operones complejos: mms y gln</td>
</tr>
<tr>
<td></td>
<td>6.7 El fago lambda como modelo de regulación</td>
</tr>
<tr>
<td></td>
<td>6.8 Regulación a nivel postranscripcional</td>
</tr>
<tr>
<td>7</td>
<td>Transcripción en organismos eucariotes</td>
</tr>
<tr>
<td></td>
<td>7.1 Organización del genoma eucariote</td>
</tr>
<tr>
<td></td>
<td>7.2 Los tres tipos de RNA polimerasas</td>
</tr>
<tr>
<td></td>
<td>7.3 El promotor y otros elementos reguladores. Complejos transcripcionales. Similitudes y diferencias entre procariotes y eucariotes</td>
</tr>
<tr>
<td></td>
<td>7.4 Empalme de RNA. Química del empalme, maquinaria, mecanismos, empalme alternativo, trans-empalme</td>
</tr>
<tr>
<td></td>
<td>7.5 Otras modificaciones del RNA: Cap, poli-A, splicing, edición del RNA</td>
</tr>
<tr>
<td>8</td>
<td>Traducción</td>
</tr>
<tr>
<td></td>
<td>8.1 El ribosoma, los RNA de transferencia y otros factores</td>
</tr>
<tr>
<td></td>
<td>8.2 Etapas en el proceso de la traducción; similitudes y diferencias entre procariotes y eucariotes</td>
</tr>
<tr>
<td></td>
<td>8.3 Iniciación, elongación y terminación. Factores que participan en cada etapa</td>
</tr>
<tr>
<td>9</td>
<td>Regulación de la expresión genética en eucariotes</td>
</tr>
<tr>
<td></td>
<td>9.1 Elementos regulatorios en cis: UAS, enhancers y silenciadores</td>
</tr>
<tr>
<td></td>
<td>9.2 Los diferentes dominios de unión al DNA en proteínas regulatorias: dedos de zinc, dominio hélice-vuelta-hélice, dominio hélice-loop-hélice, cierre de leucina</td>
</tr>
<tr>
<td></td>
<td>9.3 Transducción de señales y control de los reguladores de la transcripción</td>
</tr>
<tr>
<td></td>
<td>9.4. Silenciamiento por RNAs de interferencia</td>
</tr>
<tr>
<td>10</td>
<td>Métodos en Biología Molecular</td>
</tr>
<tr>
<td></td>
<td>10.1 Las enzimas de restricción y otras enzimas que se usan en biología molecular</td>
</tr>
<tr>
<td></td>
<td>10.2 Clonación de genes</td>
</tr>
<tr>
<td></td>
<td>10.3 Técnicas básicas de aislamiento y caracterización de genes: Southern-blot, Northern-blot, Western-blot, bibliotecas de DNA y cDNA, rastreo con sondas radioactivas, PCR, RT-PCR, PCR de tiempo real, “primer extensión”, ensayos de protección con nucleasa S1, secuenciación, microarreglos, inmunoprecipitación de la cromatina, ensayos CHIP-chip. Next Generation Sequencing</td>
</tr>
</tbody>
</table>

Bibliografía Básica:
Bibliografía Complementaria:

Sugerencias didácticas:
<table>
<thead>
<tr>
<th></th>
<th>(X)</th>
<th>()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>()</td>
<td></td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
<td></td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:
<table>
<thead>
<tr>
<th></th>
<th>(X)</th>
<th>()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exámenes Parciales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examen final escrito</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
<td>()</td>
<td></td>
</tr>
<tr>
<td>Participación en clase</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Asistencia</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Seminario</td>
<td>()</td>
<td></td>
</tr>
<tr>
<td>Otras: Ensayo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biología molecular, así como tener experiencia docente.
Denominación
BIOQUÍMICA

Carácter
Optativo de elección

Horas
<table>
<thead>
<tr>
<th>Tipo</th>
<th>Teoría</th>
<th>Práctica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teórica</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horas por semana</th>
<th>Horas al Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>64</td>
</tr>
</tbody>
</table>

Duración del programa
Semestral

Objetivo general
Analizar la composición y organización molecular de los seres vivos, estudiando la estructura y función de proteínas y enzimas, la organización de la célula y los mecanismos regulatorios que integran las redes metabólicas y de señalización en los sistemas biológicos.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td>2</td>
<td>Agua y sus propiedades</td>
</tr>
<tr>
<td>3</td>
<td>Química del carbono</td>
</tr>
<tr>
<td>4</td>
<td>Aminoácidos y proteínas</td>
</tr>
<tr>
<td>5</td>
<td>Enzimas</td>
</tr>
<tr>
<td>6</td>
<td>Biomembranas</td>
</tr>
<tr>
<td>7</td>
<td>Termodinámica y Bioenergética</td>
</tr>
<tr>
<td>8</td>
<td>Regulación e integración metabólica</td>
</tr>
<tr>
<td>9</td>
<td>Fosforilación oxidativa y fotofosforilación</td>
</tr>
<tr>
<td>10</td>
<td>Transducción de señales</td>
</tr>
</tbody>
</table>

| Total de horas: | 64 |
| Suma total de horas: | 64 |

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td>2</td>
<td>Agua y sus propiedades</td>
</tr>
<tr>
<td>3</td>
<td>Química del carbono</td>
</tr>
<tr>
<td>4</td>
<td>Aminoácidos y proteínas</td>
</tr>
<tr>
<td>1.1</td>
<td>Orígenes y desarrollo de la Bioquímica</td>
</tr>
<tr>
<td>1.2</td>
<td>La lógica molecular de los seres vivos</td>
</tr>
<tr>
<td>2.1</td>
<td>Moléculas polares, no polares, anfipáticas</td>
</tr>
<tr>
<td>2.2</td>
<td>Interacciones débiles: puentes de hidrógeno, fuerzas de van der Waals, etc.</td>
</tr>
<tr>
<td>2.3</td>
<td>Propiedades físicas del agua</td>
</tr>
<tr>
<td>2.4</td>
<td>Estructura del agua, líquida</td>
</tr>
<tr>
<td>2.5</td>
<td>El agua como solvente y osmolaridad</td>
</tr>
<tr>
<td>2.6</td>
<td>Conceptos de ácidos, bases, pH, pK, amortiguadores</td>
</tr>
<tr>
<td>3.1</td>
<td>Propiedades del átomo de carbono</td>
</tr>
<tr>
<td>3.2</td>
<td>Reactividad del carbono con otros átomos para formar grupos funcionales</td>
</tr>
<tr>
<td>4.1</td>
<td>Clasificación de los aminoácidos</td>
</tr>
<tr>
<td>4.2</td>
<td>Propiedades de los aminoácidos: grado de polaridad de la cadena lateral, comportamiento ácido-base, punto isoelectrónico, absorción de luz, reactividad de las cadenas laterales, aminoácidos esenciales</td>
</tr>
<tr>
<td>4.3</td>
<td>Péptidos y enlace peptídico</td>
</tr>
<tr>
<td>4.4</td>
<td>Proteínas</td>
</tr>
<tr>
<td>4.5</td>
<td>Funciones</td>
</tr>
<tr>
<td>4.6</td>
<td>Clasificación</td>
</tr>
<tr>
<td>4.7</td>
<td>Estructura de las proteínas: primaria, secundaria, terciaria, cuaternaria y quinaria</td>
</tr>
<tr>
<td>4.8</td>
<td>Fuerzas no covalentes en la estructura proteica</td>
</tr>
<tr>
<td>4.9</td>
<td>Patrones básicos de plegamiento</td>
</tr>
<tr>
<td>4.10</td>
<td>Formación de oligómeros</td>
</tr>
<tr>
<td>4.11</td>
<td>Estructura supersecundaria, dominios, estructura modular y evolución de proteínas</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>4-4.8</td>
<td>Familias y super familias de proteínas</td>
</tr>
<tr>
<td>4.5</td>
<td>Plegamiento nativo y desnaturalización</td>
</tr>
<tr>
<td>4.6</td>
<td>Determinación y predicción de la estructura tridimensional, predicción de la función a partir de la secuencia y estructura</td>
</tr>
<tr>
<td>4.7</td>
<td>Interacción de proteínas con otras moléculas</td>
</tr>
<tr>
<td>4.8</td>
<td>Actividad: Los alumnos aprenderán a utilizar bases de datos de proteínas cristalizadas y con ellas utilizan programas de cómputo que permiten visualizar la estructura de una proteína, así como las interacciones entre los aminoácidos que la conforman (y sus grupos funcionales) para un mayor entendimiento de las diferentes estructuras que se pueden formar con una secuencia de aminoácidos</td>
</tr>
<tr>
<td>5</td>
<td>Enzimas</td>
</tr>
<tr>
<td>5.1</td>
<td>Clasificación y nomenclatura</td>
</tr>
<tr>
<td>5.2</td>
<td>Sito catalítico y sitios alostéricos</td>
</tr>
<tr>
<td>5.3</td>
<td>Residuos y unidades catalíticos</td>
</tr>
<tr>
<td>5.4</td>
<td>Cofactores y coenzimas</td>
</tr>
<tr>
<td>5.5</td>
<td>Cinética enzimática</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Generalidades sobre cinética química</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Modificación química de proteínas mediante reactivos específicos de grupo</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Cinética enzimática de sistemas unireactantes</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Cinética de sistemas multireactantes</td>
</tr>
<tr>
<td>5.5.5</td>
<td>Cálculo de parámetros cinéticos</td>
</tr>
<tr>
<td>5.5.6</td>
<td>Deducción de ecuaciones por el método de King-Altman</td>
</tr>
<tr>
<td>5.5.7</td>
<td>Determinación de mecanismos cinéticos por estudios de velocidades iniciales</td>
</tr>
<tr>
<td>5.5.8</td>
<td>Inhibición y activación de la actividad enzimática</td>
</tr>
<tr>
<td>5.5.9</td>
<td>Determinación de mecanismos cinéticos por estudios de inhibición por productos y análogos de sustratos y productos</td>
</tr>
<tr>
<td>5.5.10</td>
<td>Efecto del pH sobre la catálisis enzimática</td>
</tr>
<tr>
<td>5.5.11</td>
<td>Efecto de la temperatura sobre la catálisis enzimática</td>
</tr>
<tr>
<td>5.6</td>
<td>Comportamiento cinético oscilatorio</td>
</tr>
<tr>
<td>5.7</td>
<td>Mecanismos de catálisis enzimática</td>
</tr>
<tr>
<td>6</td>
<td>Biomembranas</td>
</tr>
<tr>
<td>6.1</td>
<td>Estructura de los lípidos</td>
</tr>
<tr>
<td>6.2</td>
<td>Estructura y modelos de membrana</td>
</tr>
<tr>
<td>6.3</td>
<td>Seminario: microdominios: balsas lipídicas</td>
</tr>
<tr>
<td>6.4</td>
<td>Proteínas de membrana: transmembrana, ancladas por glucosil-fosfatidil inositol</td>
</tr>
<tr>
<td>6.5</td>
<td>Interacciones lipido-proteína</td>
</tr>
<tr>
<td>6.6</td>
<td>Métodos de estudio</td>
</tr>
<tr>
<td>7</td>
<td>Termodinámica y Bioenergética</td>
</tr>
<tr>
<td>7.1</td>
<td>Leyes de la termodinámica</td>
</tr>
<tr>
<td>7.2</td>
<td>Sistemas y funciones termodinámicas, conceptos de energía libre, entropía, entalpía</td>
</tr>
<tr>
<td>7.3</td>
<td>Reacciones químicas y el cambio en la energía libre</td>
</tr>
<tr>
<td>7.4</td>
<td>ATP y la transferencia de grupos fosforilo. Importancia de acoplar la hidrólisis del ATP a reacciones termodinámicamente desfavorables</td>
</tr>
<tr>
<td>7.5</td>
<td>Reacciones de oxidación y reducción biológicas. Potenciales redox y transferencia de electrones</td>
</tr>
<tr>
<td>7.6</td>
<td>Estado al equilibrio y estado estable</td>
</tr>
<tr>
<td>8</td>
<td>Regulación e integración metabólica</td>
</tr>
<tr>
<td>8.1</td>
<td>Metabolismo, anabolismo y catabolismo, moléculas que intervienen en el flujo de energía</td>
</tr>
<tr>
<td>8.2</td>
<td>Pasos limitantes en la regulación de vías metabólicas</td>
</tr>
<tr>
<td>8.3</td>
<td>Análisis de control metabólico y coeficientes de control de flujo</td>
</tr>
<tr>
<td>8.4</td>
<td>Regulación por retroalimentación</td>
</tr>
<tr>
<td>8.5</td>
<td>Bosquejo general de vías metabólicas, vías centrales del metabolismo</td>
</tr>
<tr>
<td>8.6</td>
<td>Glucólisis. Fases de inversión y de generación de energía. Regulación</td>
</tr>
<tr>
<td>8.7</td>
<td>Ciclo del ácido cítrico. Introducción y pérdida de 2 átomos de carbono. Regeneración de oxalacetato. Regulación</td>
</tr>
<tr>
<td>8.8</td>
<td>Gluconeogénesis. Regulación</td>
</tr>
<tr>
<td>8.9</td>
<td>Regulación del metabolismo por: modificación covalente (fosforilación y desfosforilación)</td>
</tr>
<tr>
<td>8.10</td>
<td>Transporte de metabolitos y regulación metabólica</td>
</tr>
<tr>
<td>8.11</td>
<td>Regulación dependiente de metabolitos: proteína cinasa dependiente de AMP</td>
</tr>
<tr>
<td>8.12</td>
<td>Especialización metabólica en los órganos. Isoenzimas</td>
</tr>
<tr>
<td>8.13</td>
<td>Integración del metabolismo y regulación concertada</td>
</tr>
<tr>
<td>8.14</td>
<td>Modelaje de vías metabólicas</td>
</tr>
<tr>
<td>9</td>
<td>Fosforilación oxidativa y fotofosforilación</td>
</tr>
<tr>
<td>9.1</td>
<td>Estructura de las mitocondrias, reacciones metabólicas que ocurren en el organelo. Transferencia de electrones por los cuatro complejos respiratorios en la mitocondria y mecanismo de síntesis de ATP</td>
</tr>
<tr>
<td>9.2</td>
<td>Regulación de la fosforilación oxidativa</td>
</tr>
<tr>
<td>9.3</td>
<td>La mitocondria es un organelo que importa a la mayoría de sus proteínas</td>
</tr>
<tr>
<td>9.4</td>
<td>Características generales de la fotofosforilación, estructura de los cloroplastos</td>
</tr>
<tr>
<td>9.5</td>
<td>Absorción de la luz, análisis de los diferentes tipos de fotosistemas y complejos protéicos que intervienen en la transferencia de electrones</td>
</tr>
<tr>
<td>9.6</td>
<td>El flujo de electrones motivado por la luz, la reacción de fotólisis del agua</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>9.7</td>
<td>Síntesis de ATP por la fotofosforilación</td>
</tr>
<tr>
<td>9.8</td>
<td>El cloroplasto es un organelo con información genética y que importa una gran cantidad de sus proteínas</td>
</tr>
<tr>
<td>10</td>
<td>Transducción de señales</td>
</tr>
<tr>
<td></td>
<td>10.1 Estrategias de señalización: proteínas cinasas, proteínas G y proteínas acopladoras</td>
</tr>
<tr>
<td></td>
<td>10.2 Etapas de la transducción de señales</td>
</tr>
<tr>
<td></td>
<td>10.3 Receptores intracelulares y su mecanismo de señalización</td>
</tr>
<tr>
<td></td>
<td>10.4 Receptores de la superficie celular: Clasificación, estructura</td>
</tr>
<tr>
<td></td>
<td>10.5 Receptores acoplados a proteínas G triméricas: señalización mediada por cAMP y mediada por fosfatidil inositol 3 fosfato y diacilglicerol</td>
</tr>
<tr>
<td></td>
<td>10.6 Receptores tipo tirosina cinasas</td>
</tr>
<tr>
<td></td>
<td>10.7 Transmisión de señales asociada al receptor de insulina</td>
</tr>
<tr>
<td></td>
<td>10.8 Receptores de citocinas clase I y II</td>
</tr>
<tr>
<td></td>
<td>10.9 Receptores de antígenos de las células hematopoyéticas</td>
</tr>
<tr>
<td></td>
<td>10.10 Receptores tipo Ser/Tre cinasas</td>
</tr>
<tr>
<td></td>
<td>10.11 Vías de transmisión de señales</td>
</tr>
<tr>
<td></td>
<td>10.11.1 Vía de la fosfatidil inositol 3' cinasa</td>
</tr>
<tr>
<td></td>
<td>10.11.2 Vía de la fosfolipasa C g</td>
</tr>
<tr>
<td></td>
<td>10.11.3 Vía Ras-MAP cinasas</td>
</tr>
<tr>
<td></td>
<td>10.11.4 Vía de los factores STAT</td>
</tr>
<tr>
<td></td>
<td>10.11.5 Vía del NF κ B</td>
</tr>
<tr>
<td></td>
<td>10.12 Regulación de la magnitud y duración de la señal</td>
</tr>
<tr>
<td></td>
<td>10.13 Transmisión de señales y enfermedad</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:

Exposición oral	(X)
Exposición audiovisual	(X)
Ejercicios dentro de clase	(X)
Ejercicios fuera del aula	(X)
Seminarios	(X)
Lecturas obligatorias	(X)
Trabajo de Investigación	()
Prácticas de taller o laboratorio	()
Prácticas de campo	()
Otros:	

Mecanismos de evaluación de aprendizaje de los alumnos:

Exámenes Parciales	(X)
Examen final escrito	()
Trabajos y tareas fuera del aula	(X)
Exposición de seminarios por los alumnos	(X)
Participación en clase	()
Asistencia	()
Seminario	()
Otras:	

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en bioquímica, así como tener experiencia docente.
Denominación: DISEÑO EXPERIMENTAL Y ESTADÍSTICA
Clave: Semestre(s): 1
Campo de Conocimiento: Biología Experimental
No. Créditos: 8
Carácter: Optativo de elección
Tipo: Teórica
Horas por semana: Teoría: 4
Horas al Semestre: Práctica: 0
Carácter: Optativo de elección
Horas por semana: Teoría: 4
Horas al Semestre: Práctica: 0
Modality: Curso
Duración del programa: Semestral

Seriable: Sin Seriación (X)
Objetivo general: El curso pretende que el estudiante del Posgrado en Ciencias Biológicas conozca los principios básicos del diseño experimental y los pueda aplicar en su trabajo de investigación.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
</table>
| 1 | Metodología de la investigación
1.1 El problema de investigación
1.2 Hipótesis
1.3 Muestreo
1.4 Estimación de parámetros
1.5 Tipos de diseños
| 2 | Clasificación de los tipos de diseños experimentales
2.1 Diseño experimental con grupos de sujetos distintos
2.2 Diseño experimental con los mismos sujetos
2.3 Diseños factoriales
| 3 | Introducción a la medición
3.1 Ejercicios y Ejemplos
| 4 | Inferencia estadística
4.1 Estadística descriptiva y estadística inferencial
4.2 Escalas de medición
4.3 Probabilidad
4.4 Distribuciones estadísticas
| 5 | Pruebas estadísticas
5.1 Estadística Paramétrica
5.2 Análisis de varianza
5.2.1 Tipos de análisis de varianza
5.2.2 Análisis posthoc
5.3 Estadística no paramétricas

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Sugerencia didáctica</th>
<th>(X)</th>
<th>()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>()</td>
<td></td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>()</td>
<td></td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>()</td>
<td></td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
<td></td>
</tr>
<tr>
<td>Otros</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Perfiles de evaluación de aprendizaje de los alumnos:

<table>
<thead>
<tr>
<th>Mecanismo de evaluación</th>
<th>(X)</th>
<th>()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exámenes Parciales</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Examen final escrito</td>
<td>()</td>
<td></td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
<td>()</td>
<td></td>
</tr>
<tr>
<td>Participación en clase</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Asistencia</td>
<td>()</td>
<td></td>
</tr>
<tr>
<td>Seminario</td>
<td>()</td>
<td></td>
</tr>
<tr>
<td>Otras</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesoras deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en estadística, así como tener experiencia docente.
Denominación: FUNDAMENTOS DE LAS TECNICAS DE BIOLOGÍA MOLECULAR

<table>
<thead>
<tr>
<th>Clave:</th>
<th>Semestre(s): 1</th>
<th>Campo de Conocimiento: Biología Experimental, Biomedicina</th>
<th>No. Créditos: 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carácter: Optativo de elección</td>
<td>Horas</td>
<td>Horas por semana</td>
<td>Horas al Semestre</td>
</tr>
<tr>
<td>Tipo: Teórica</td>
<td>Teoría: 4</td>
<td>Práctica: 0</td>
<td>4</td>
</tr>
<tr>
<td>Modalidad: Curso</td>
<td>Duración del programa: Semestral</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seriar: Sin Seriaración (X) Obligatoria () Indicativa ()

Objetivo general:
El curso tiene como objetivo principal mostrar, entender y discutir las bases de las técnicas básicas en Biología Molecular, para que al final del curso los alumnos puedan resolver problemas reales que se presentan en los laboratorios de Biología Molecular.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conceptos básicos en Biología Molecular</td>
</tr>
<tr>
<td>2</td>
<td>Extracción y Manipulación de ácidos nucleicos (AN)</td>
</tr>
<tr>
<td>3</td>
<td>Endonucleasas o enzimas de restricción</td>
</tr>
<tr>
<td>4</td>
<td>Técnicas de hibridación</td>
</tr>
<tr>
<td>5</td>
<td>Reacción en cadena de la polimerasa</td>
</tr>
<tr>
<td>6</td>
<td>Bibliotecas genómicas (genotecas)</td>
</tr>
<tr>
<td>7</td>
<td>Secuenciación de DNA</td>
</tr>
<tr>
<td>8</td>
<td>Mutagénesis: fundamentos y aplicaciones en cada caso</td>
</tr>
<tr>
<td>9</td>
<td>Transfecciones</td>
</tr>
<tr>
<td>10</td>
<td>Análisis de proteínas</td>
</tr>
<tr>
<td>11</td>
<td>Citogenética molecular</td>
</tr>
<tr>
<td>12</td>
<td>El fundamento de la tecnología empleada en microarrays</td>
</tr>
<tr>
<td>Total de horas:</td>
<td>64</td>
</tr>
<tr>
<td>Suma total de horas:</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Extracción y Manipulación de ácidos nucleicos (AN)</td>
</tr>
<tr>
<td>2</td>
<td>2.1 Etapas básicas de un procedimiento general para Extracción y Purificación de AN</td>
</tr>
<tr>
<td>2</td>
<td>2.2 Métodos de fragmentación y lisis</td>
</tr>
<tr>
<td>2</td>
<td>2.3 Eliminación de restos celulares</td>
</tr>
<tr>
<td>2</td>
<td>2.4 Desproteinización</td>
</tr>
<tr>
<td>2</td>
<td>2.5 Cromatografía de intercambio aniónico</td>
</tr>
<tr>
<td>2</td>
<td>2.6 Extracción de DNA desde un gel de agarosa</td>
</tr>
<tr>
<td>2</td>
<td>2.7 Extracción fenólica de proteínas</td>
</tr>
<tr>
<td>2</td>
<td>2.8 Análisis espectrofotométrico y criterios de pureza</td>
</tr>
<tr>
<td>2</td>
<td>2.9 Factores que afectan el rendimiento, calidad y pureza de los AN purificados</td>
</tr>
<tr>
<td>2</td>
<td>2.10 Métodos específicos</td>
</tr>
<tr>
<td>3</td>
<td>Endonucleasas o enzimas de restricción</td>
</tr>
<tr>
<td>3</td>
<td>3.1 Tipos de enzimas de restricción</td>
</tr>
<tr>
<td>3</td>
<td>3.2 Nomenclatura y ejemplos de enzimas de restricción</td>
</tr>
<tr>
<td>3</td>
<td>3.3 Mecanismos de acción de las enzimas de restricción (AN)</td>
</tr>
<tr>
<td>3</td>
<td>3.4 Usos de las enzimas de restricción</td>
</tr>
<tr>
<td>3</td>
<td>3.5 Manipulación de DNA y RNA con enzimas de restricción</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| 4 | Técnicas de hibridación
4.1 Marcaje de oligonucleótidos
4.2 Selección y marcaje de sondas
4.3 Ejemplos y aplicaciones: Southern blot, Northern blot, hibridación in situ, microarreglos, PCR |
| 5 | Reacción en cadena de la polimerasa
5.1 Fundamentos de la técnica
5.2 Tipos más usuales de PCRs
5.3 Mezcla de reacción
5.4 Aplicaciones en las ciencias médico biológicas |
| 6 | Bibliotecas genómicas (genotecas)
6.1 Aislamiento y digestión parcial de DNA total de alto peso molecular
6.2 Evaluación del tamaño de los insertos
6.3 Llenado parcial de los fragmentos Sau3AI y ligación con el vector
6.4 Empaquetamiento y título del fago empaquetado
6.5 Caracterización de la biblioteca genómica
6.6 Aplicaciones de una genoteca |
| 7 | Secuenciación de DNA
7.1 Estrategias de secuenciación
7.2 Preparación de moldes
7.3 Método dideoxi o de Sanger
7.4 Nuevas plataformas (pirosecuenciación, Solid)
7.5 Aplicaciones |
| 8 | Mutagénesis: fundamentos y aplicaciones en cada caso
8.1 Mutagénesis de DNA clonado
8.2 Mutagénesis dirigida sin selección definida
8.3 Mutagénesis con oligos degenerados
8.4 Síntesis de Genes: ensamblaje de secuencias blanco utilizando oligonucleótidos largos
8.5 Mutagénesis en regiones específicas
8.6 Mutagénesis por PCR |
| 9 | Transfecciones
9.1 Transfección en células eucariontes
9.2 Transfecciones con fosfato de calcio Ca 3 (PO 4) 2
9.3 Liposomas y otros nuevos vectores
9.4 Transferencias estable
9.5 Transferencias transitorias |
| 10 | Análisis de proteínas
10.1 Métodos de cuantificación y preparación de proteínas. Métodos de migración diferencial (electroforesis, cromatografía y centrifugación).
10.2 Métodos de análisis estructural (espectrometría de masas, NMR, cristalográfia)
10.3 Expresión de proteínas recombinantes
10.4 Proteómica (Electroforesis Bidimensional, Visualización de proteínas y análisis de imagen, Proteómica de expresión diferenciada, Análisis por espectrometría de masas: Huella peptídica (MALDI-TOF) y Secuenciación mediante espectrometría de masas en tándem)
10.5 Alineamientos de secuencias
10.6 Predicción de estructura proteica: Modelado por homología |
| 11 | Citogenética Molecular
11.1 Hibridación fluorescente in situ (FISH)
11.2 Hibridación genómica comparativa (CGH) |
| 12 | El fundamento de la tecnología empleada en microarrays
12.1 Componentes de un experimento de microarrays
12.2 Diseño experimental
12.3 Muestras biológicas
12.4 Tipos de microarrays
12.5 Consideraciones técnicas
12.6 Análisis de los datos
12.7 Métodos de Agrupamiento y Visualización de los datos
12.8 Interpretación de los datos: data mining
12.9 Reporte de los datos
12.10 Next Generation Sequencing |
Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Exposición oral</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición audiovisual</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X)</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>()</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

<table>
<thead>
<tr>
<th>Exámenes Parciales</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examen final escrito</td>
<td>()</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
<td>(X)</td>
</tr>
<tr>
<td>Participación en clase</td>
<td>()</td>
</tr>
<tr>
<td>Asistencia</td>
<td>()</td>
</tr>
<tr>
<td>Seminario</td>
<td>(X)</td>
</tr>
<tr>
<td>Otras: Ensayo</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biología molecular, así como tener experiencia docente.
Denominación: INMUNOLOGÍA AVANZADA: MOLECULAS DE LA RESPUESTA INMUNE
Clave:
Semestre(s): 1
Campo de Conocimiento: Biología Experimental, Biomedicina
No. Créditos: 8
Carácter: Optativo de elección
Horas
Tipo: Teórica Teoría: 4 Práctica: 0 Horas por semana 4 Horas al Semestre 64
Modalidad: Curso Duración del programa: Semestral
Seriación: Sin Seriación (X) Obligatoria () Indicativa ()
Objetivo general:
El objetivo es ofrecer un panorama actualizado de los mecanismos moleculares que ocurren en la respuesta inmune, que permita al alumno el dominio de la información básica y actualizada, necesaria en su formación y con la posibilidad de que incremente alternativas de análisis o aplicación a sus proyectos de investigación, basándose en métodos inmunológicos.

índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción a la respuesta inmune</td>
</tr>
<tr>
<td>2</td>
<td>Mecanismos opsónicos y no opsónicos de Fagocitosis</td>
</tr>
<tr>
<td>3</td>
<td>Regulación del Sistema del Complemento</td>
</tr>
<tr>
<td>4</td>
<td>Inflamación</td>
</tr>
<tr>
<td></td>
<td>Total de horas: 64</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| 5 | Receptores para antígeno
5.1 Estructura de Inmunoglobulinas y Receptor de linfocito T
5.2 Mecanismos de diversidad del repertorio de Inmunoglobulinas y Receptor de linfocito T
5.3 Anticuerpos monocionales |
| 6 | Complejo Principal de Histocompatibilidad
6.1 Organización génica
6.2 Estructura de las moléculas Clase I y Clase II
6.3 Moléculas de la región III
6.4 Vías de procesamiento y presentación de antígeno |
| 7 | Moléculas de la familia CD1
7.1 Antígenos (lipídicos y péptidos hidrofóbicos)
7.2 Procesamiento de antígenos
7.3 Otras vías de procesamiento de antígeno |

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exámenes Parciales (X)</td>
</tr>
<tr>
<td>Examen final escrito (X)</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula ()</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos (X)</td>
</tr>
<tr>
<td>Participación en clase (X)</td>
</tr>
<tr>
<td>Asistencia ()</td>
</tr>
<tr>
<td>Seminario ()</td>
</tr>
<tr>
<td>Otras: ()</td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en inmunología avanzada, así como tener experiencia docente.
Denominación:

PROTEOMICA

Clave:

Semestre(s): 1

Campo de Conocimiento:

Biología Experimental, Biomedicina

No. Créditos: 8

Carácter:

Optativo de elección

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Teórico-Práctica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teoría</td>
<td>2</td>
</tr>
<tr>
<td>Práctica</td>
<td>2</td>
</tr>
<tr>
<td>Horas por semana</td>
<td>4</td>
</tr>
<tr>
<td>Horas al Semestre</td>
<td>64</td>
</tr>
</tbody>
</table>

Modalidad:

Curso

Duración del programa: Semestral

Seriación:

Sin Seriación (X) Obligatoria () Indicativa ()

Objetivo general:

El objetivo del curso es obtener el conocimiento básico en las técnicas empleadas en la proteómica y entender cómo han sido utilizadas para contestar preguntas básicas en la investigación.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción a la proteómica</td>
</tr>
<tr>
<td>1.1</td>
<td>Definición de Proteómica</td>
</tr>
<tr>
<td>1.2</td>
<td>Tipos de proteómica</td>
</tr>
<tr>
<td>1.3</td>
<td>Dinámica de la proteómica</td>
</tr>
<tr>
<td>1.4</td>
<td>Importancia</td>
</tr>
<tr>
<td>1.5</td>
<td>Diagrama de flujo general de los estudios proteómicos</td>
</tr>
<tr>
<td>1.6</td>
<td>Aplicaciones</td>
</tr>
<tr>
<td>2</td>
<td>Revisión de proteínas</td>
</tr>
<tr>
<td>2.1</td>
<td>Aminoaídos</td>
</tr>
<tr>
<td>2.2</td>
<td>Estructura primaria, secundaria, terciaria y cuaternaria</td>
</tr>
<tr>
<td>2.3</td>
<td>Modificaciones post-traducionales</td>
</tr>
<tr>
<td>3</td>
<td>Obtención y preparación de muestras</td>
</tr>
<tr>
<td>3.1</td>
<td>Estrategias generales de extracción de proteínas (tejidos, células, fluidos)</td>
</tr>
<tr>
<td>4</td>
<td>2D-GE Fundamentos del IEF y SDS-PAGE</td>
</tr>
<tr>
<td>4.1</td>
<td>Problemas frecuentes en la resolución de geles y soluciones</td>
</tr>
<tr>
<td>5</td>
<td>Métodos de detección</td>
</tr>
<tr>
<td>5.1</td>
<td>Tipos de métodos de detección. Límites de detección y sensibilidad</td>
</tr>
<tr>
<td>5.2</td>
<td>Ventajas y desventajas</td>
</tr>
<tr>
<td>6</td>
<td>Análisis in silico</td>
</tr>
<tr>
<td>6.1</td>
<td>Revisión de los programas computacionales disponibles (Melanie, PD-Quest, Progenesis)</td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción a la proteómica</td>
</tr>
<tr>
<td>1.1</td>
<td>Definición de Proteómica</td>
</tr>
<tr>
<td>1.2</td>
<td>Tipos de proteómica</td>
</tr>
<tr>
<td>1.3</td>
<td>Dinámica de la proteómica</td>
</tr>
<tr>
<td>1.4</td>
<td>Importancia</td>
</tr>
<tr>
<td>1.5</td>
<td>Diagrama de flujo general de los estudios proteómicos</td>
</tr>
<tr>
<td>1.6</td>
<td>Aplicaciones</td>
</tr>
<tr>
<td>2</td>
<td>Revisión de proteínas</td>
</tr>
<tr>
<td>2.1</td>
<td>Aminoaídos</td>
</tr>
<tr>
<td>2.2</td>
<td>Estructura primaria, secundaria, terciaria y cuaternaria</td>
</tr>
<tr>
<td>2.3</td>
<td>Modificaciones post-traducionales</td>
</tr>
<tr>
<td>3</td>
<td>Obtención y preparación de muestras</td>
</tr>
<tr>
<td>3.1</td>
<td>Estrategias generales de extracción de proteínas (tejidos, células, fluidos)</td>
</tr>
<tr>
<td>4</td>
<td>2D-GE Fundamentos del IEF y SDS-PAGE</td>
</tr>
<tr>
<td>4.1</td>
<td>Problemas frecuentes en la resolución de geles y soluciones</td>
</tr>
<tr>
<td>5</td>
<td>Métodos de detección</td>
</tr>
<tr>
<td>5.1</td>
<td>Tipos de métodos de detección. Límites de detección y sensibilidad</td>
</tr>
<tr>
<td>5.2</td>
<td>Ventajas y desventajas</td>
</tr>
<tr>
<td>6</td>
<td>Análisis in silico</td>
</tr>
<tr>
<td>6.1</td>
<td>Revisión de los programas computacionales disponibles (Melanie, PD-Quest, Progenesis)</td>
</tr>
</tbody>
</table>
Unidad | Tema y Subtemas
--- | ---
6 | 6.2 Aplicaciones
7 | Otras técnicas en proteómica
 | 7.1 MudPit, Shotgun proteomics, Cromatografía de líquidos, Orbitrap
 | 7.2 Microarreglos de proteínas
8 | Expresión diferencial de proteínas
 | 8.1 DIGE, ICAT, SILAC, iTRAQ, 15 N
9 | Espectrometría de Masas
 | 9.1 Fundamentos, métodos de ionización, analizadores de masas, LC-MS/MS
10 | Bioinformática
 | 10.1 Revisión de las bases de datos y algoritmos disponibles
11 | Sesión práctica I
 | 11.1 Extracción de proteínas de muestras problema
12 | Sesión práctica II
 | 12.1 Preparación de la muestra y Rehidratación para IEF
13 | Sesión práctica III
 | 13.1 Isoelectroenfoque
14 | Sesión práctica IV
 | 14.1 SDS-PAGE
15 | Sesión práctica V
 | 15.1 Revelado y análisis in silico

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
- Exposición oral
- Exposición audiovisual
- Ejercicios dentro de clase
- Ejercicios fuera del aula
- Seminarios
- Lecturas obligatorias
- Trabajo de Investigación
- Prácticas de taller o laboratorio
- Otros:

Mecanismos de evaluación de aprendizaje de los alumnos:
- Exámenes Parciales
- Examen final escrito
- Trabajos y tareas fuera del aula
- Exposición de seminarios por los alumnos
- Participación en clase
- Asistencia
- Seminario
- Otras:

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en proteómica, así como tener experiencia docente.
Denominación: EXPRESIÓN GENÉTICA, REGULACIÓN METABÓLICA, Y ASPECTOS EVOLUTIVOS

<table>
<thead>
<tr>
<th>Clave:</th>
<th>Semestre(s): 1</th>
<th>Campo de Conocimiento: Biología Evolutiva, Biomedicina y Biología Experimental</th>
<th>No. Créditos: 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carácter:</td>
<td>Optativo de elección</td>
<td>Teoría: 4</td>
<td>Práctica: 0</td>
</tr>
<tr>
<td>Modalidad:</td>
<td>Curso</td>
<td>Duración del programa: Semestral</td>
<td></td>
</tr>
</tbody>
</table>

Objetivo general: Estudiar la relación entre el metabolismo y la regulación genética con un enfoque evolutivo.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td>2</td>
<td>Regulación Metabólica</td>
</tr>
<tr>
<td>3</td>
<td>Sensores y Transducción de señales</td>
</tr>
<tr>
<td>4</td>
<td>Señalización y Transcripción</td>
</tr>
<tr>
<td>5</td>
<td>Regulación epigenética</td>
</tr>
<tr>
<td>6</td>
<td>Efectos sobre el Metabolismo</td>
</tr>
<tr>
<td>7</td>
<td>Sistemas Complejos</td>
</tr>
<tr>
<td>8</td>
<td>Simposio de Fin de Curso</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:
http://www.nature.com/msb/journal/v2/n1/full/msb4100080.html
http://tbiomed.com/content/3/1/13

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Exposición oral</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición audiovisual</td>
<td>(x)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(x)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>()</td>
</tr>
<tr>
<td>Seminarios</td>
<td>()</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>(x)</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>(x)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>()</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

<table>
<thead>
<tr>
<th>Exámenes Parciales</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examen final escrito</td>
<td>()</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
<td>(x)</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
<td>(x)</td>
</tr>
<tr>
<td>Participación en clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Asistencia</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminario</td>
<td>()</td>
</tr>
<tr>
<td>Otras: Ensayo (2)</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:
El profesor o profesoras deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en genética, regulación metabólica y aspectos evolutivos, así como tener experiencia docente.
Campo de Conocimiento: Biomédicina
Denominación: BIOESTADÍSTICA BÁSICA

Clave: Semestre(s): 1 Campo de Conocimiento: Biomedicina No. Créditos: 8

<table>
<thead>
<tr>
<th>Carácter:</th>
<th>Horas por semana</th>
<th>Horas al Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optativo de elección</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo:</th>
<th>Teoría: 4</th>
<th>Práctica: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teórica</td>
<td>4</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modalidad: Curso</th>
<th>Duración del programa: Semestral</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Descripción:

Objetivo general:

Este curso tiene como objetivo proporcionar los conocimientos fundamentales de estadística, destacar la importancia del diseño experimental, así como la interpretación estadística de los resultados. El curso está enfocado en los aspectos prácticos del diseño y análisis en la investigación en medicina y biología. Se recomienda que el alumno tenga un mínimo de conocimientos en matemáticas para un mejor aprovechamiento. Al término del curso el alumno habrá desarrollado un juicio razonado y una actitud crítica acerca de los datos y análisis estadísticos empleados en la investigación.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td></td>
<td>1.1 Estadística en Medicina</td>
</tr>
<tr>
<td>2</td>
<td>Diseño de estudios en investigación</td>
</tr>
<tr>
<td></td>
<td>2.1 Estudios observacionales</td>
</tr>
<tr>
<td></td>
<td>2.2 Estudios experimentales</td>
</tr>
<tr>
<td></td>
<td>2.3 Meta análisis y artículos de revisión</td>
</tr>
<tr>
<td>3</td>
<td>Describiendo y analizando datos</td>
</tr>
<tr>
<td></td>
<td>3.1 Describiendo variabilidad</td>
</tr>
<tr>
<td></td>
<td>3.2 Cuantificando variabilidad</td>
</tr>
<tr>
<td></td>
<td>3.3 Representación de datos</td>
</tr>
<tr>
<td></td>
<td>3.4 Ventajas y desventajas de utilizar una computadora</td>
</tr>
<tr>
<td></td>
<td>3.5 Verificación de datos</td>
</tr>
<tr>
<td></td>
<td>3.6 Datos faltantes</td>
</tr>
<tr>
<td></td>
<td>3.7 Datos fuera de rango</td>
</tr>
<tr>
<td></td>
<td>3.8 Transformación de datos</td>
</tr>
<tr>
<td></td>
<td>3.9 Efectos de la transformación de datos</td>
</tr>
<tr>
<td>4</td>
<td>Probabilidad, poblaciones y distribuciones de probabilidad</td>
</tr>
<tr>
<td></td>
<td>4.1 Leyes de probabilidad</td>
</tr>
<tr>
<td></td>
<td>4.2 Teorema de Bayes</td>
</tr>
<tr>
<td></td>
<td>4.3 Poblaciones y muestras</td>
</tr>
<tr>
<td></td>
<td>4.4 Distribuciones; Uniforme, Binomial, Poisson, Normal y Log normal</td>
</tr>
<tr>
<td></td>
<td>4.5 Distribuciones de muestreo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Teóricas</td>
</tr>
<tr>
<td>1</td>
<td>Introducción</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Diseño de estudios en investigación</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Describiendo y analizando datos</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Probabilidad, poblaciones y distribuciones de probabilidad</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Principios del análisis estadístico</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Comparación de grupos (datos cuantitativos)</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>Comparación de datos (datos cualitativos)</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>Relación entre variables</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td></td>
<td>1.1 Estadística en Medicina</td>
</tr>
<tr>
<td>2</td>
<td>Diseño de estudios en investigación</td>
</tr>
<tr>
<td></td>
<td>2.1 Estudios observacionales</td>
</tr>
<tr>
<td></td>
<td>2.2 Estudios experimentales</td>
</tr>
<tr>
<td></td>
<td>2.3 Meta análisis y artículos de revisión</td>
</tr>
<tr>
<td>3</td>
<td>Describiendo y analizando datos</td>
</tr>
<tr>
<td></td>
<td>3.1 Describiendo variabilidad</td>
</tr>
<tr>
<td></td>
<td>3.2 Cuantificando variabilidad</td>
</tr>
<tr>
<td></td>
<td>3.3 Representación de datos</td>
</tr>
<tr>
<td></td>
<td>3.4 Ventajas y desventajas de utilizar una computadora</td>
</tr>
<tr>
<td></td>
<td>3.5 Verificación de datos</td>
</tr>
<tr>
<td></td>
<td>3.6 Datos faltantes</td>
</tr>
<tr>
<td></td>
<td>3.7 Datos fuera de rango</td>
</tr>
<tr>
<td></td>
<td>3.8 Transformación de datos</td>
</tr>
<tr>
<td></td>
<td>3.9 Efectos de la transformación de datos</td>
</tr>
<tr>
<td>4</td>
<td>Probabilidad, poblaciones y distribuciones de probabilidad</td>
</tr>
<tr>
<td></td>
<td>4.1 Leyes de probabilidad</td>
</tr>
<tr>
<td></td>
<td>4.2 Teorema de Bayes</td>
</tr>
<tr>
<td></td>
<td>4.3 Poblaciones y muestras</td>
</tr>
<tr>
<td></td>
<td>4.4 Distribuciones; Uniforme, Binomial, Poisson, Normal y Log normal</td>
</tr>
<tr>
<td></td>
<td>4.5 Distribuciones de muestreo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Teóricas</td>
</tr>
<tr>
<td>1</td>
<td>Introducción</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Diseño de estudios en investigación</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Describiendo y analizando datos</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Probabilidad, poblaciones y distribuciones de probabilidad</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Principios del análisis estadístico</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Comparación de grupos (datos cuantitativos)</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>Comparación de datos (datos cualitativos)</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>Relación entre variables</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td></td>
<td>1.1 Estadística en Medicina</td>
</tr>
<tr>
<td>2</td>
<td>Diseño de estudios en investigación</td>
</tr>
<tr>
<td></td>
<td>2.1 Estudios observacionales</td>
</tr>
<tr>
<td></td>
<td>2.2 Estudios experimentales</td>
</tr>
<tr>
<td></td>
<td>2.3 Meta análisis y artículos de revisión</td>
</tr>
<tr>
<td>3</td>
<td>Describiendo y analizando datos</td>
</tr>
<tr>
<td></td>
<td>3.1 Describiendo variabilidad</td>
</tr>
<tr>
<td></td>
<td>3.2 Cuantificando variabilidad</td>
</tr>
<tr>
<td></td>
<td>3.3 Representación de datos</td>
</tr>
<tr>
<td></td>
<td>3.4 Ventajas y desventajas de utilizar una computadora</td>
</tr>
<tr>
<td></td>
<td>3.5 Verificación de datos</td>
</tr>
<tr>
<td></td>
<td>3.6 Datos faltantes</td>
</tr>
<tr>
<td></td>
<td>3.7 Datos fuera de rango</td>
</tr>
<tr>
<td></td>
<td>3.8 Transformación de datos</td>
</tr>
<tr>
<td></td>
<td>3.9 Efectos de la transformación de datos</td>
</tr>
<tr>
<td>4</td>
<td>Probabilidad, poblaciones y distribuciones de probabilidad</td>
</tr>
<tr>
<td></td>
<td>4.1 Leyes de probabilidad</td>
</tr>
<tr>
<td></td>
<td>4.2 Teorema de Bayes</td>
</tr>
<tr>
<td></td>
<td>4.3 Poblaciones y muestras</td>
</tr>
<tr>
<td></td>
<td>4.4 Distribuciones; Uniforme, Binomial, Poisson, Normal y Log normal</td>
</tr>
<tr>
<td></td>
<td>4.5 Distribuciones de muestreo</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>5</td>
<td>Principios del análisis estadístico</td>
</tr>
<tr>
<td></td>
<td>5.1 Distribuciones de muestreo</td>
</tr>
<tr>
<td></td>
<td>5.2 Estimación y prueba de hipótesis</td>
</tr>
<tr>
<td></td>
<td>5.3 Estrategias para analizar datos</td>
</tr>
<tr>
<td></td>
<td>5.4 Presentación de resultados</td>
</tr>
<tr>
<td>6</td>
<td>Comparación de grupos (datos cuantitativos)</td>
</tr>
<tr>
<td></td>
<td>6.1 Un grupo de observaciones</td>
</tr>
<tr>
<td></td>
<td>6.2 Dos grupos de observaciones</td>
</tr>
<tr>
<td></td>
<td>6.3 Dos grupos independientes de observaciones</td>
</tr>
<tr>
<td></td>
<td>6.4 Tres o más grupos independientes de observaciones</td>
</tr>
<tr>
<td></td>
<td>6.5 Análisis de varianza (ANOVA)</td>
</tr>
<tr>
<td>7</td>
<td>Comparación de datos (datos cualitativos)</td>
</tr>
<tr>
<td></td>
<td>7.1 Proporción en dos grupos independientes</td>
</tr>
<tr>
<td></td>
<td>7.2 Dos proporciones pareadas</td>
</tr>
<tr>
<td></td>
<td>7.3 Comparando varias proporciones</td>
</tr>
<tr>
<td></td>
<td>7.4 Análisis de tablas de frecuencia</td>
</tr>
<tr>
<td>8</td>
<td>Relación entre variables</td>
</tr>
<tr>
<td></td>
<td>8.1 Correlación</td>
</tr>
<tr>
<td></td>
<td>8.2 Correlación por rango</td>
</tr>
<tr>
<td></td>
<td>8.3 Interpretación de la correlación</td>
</tr>
<tr>
<td></td>
<td>8.4 Regresión</td>
</tr>
<tr>
<td></td>
<td>8.5 Uso de la regresión</td>
</tr>
<tr>
<td></td>
<td>8.6 Múltiple regresión</td>
</tr>
<tr>
<td></td>
<td>8.7 Regresión logística y análisis discriminante</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Exposición oral</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición audiovisual</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X)</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>()</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>()</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

<table>
<thead>
<tr>
<th>Exámenes Parciales</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examen final escrito</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
<td>()</td>
</tr>
<tr>
<td>Participación en clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Asistencia</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminario</td>
<td>()</td>
</tr>
<tr>
<td>Otras:</td>
<td>()</td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesoras deberán contar con el grado de maestría o doctorado en matemáticas y poseer amplios conocimientos y experiencia en bioestadística, así como tener experiencia docente.
Denominación: BIOFÍSICA Y FISIOLOGÍA CELULAR
Clave: Semestre(s): 1
Campo de Conocimiento: Biología Experimental, Biomedicina
No. Créditos: 8

<table>
<thead>
<tr>
<th>Carácter: Optativo de elección</th>
<th>Horas por semana</th>
<th>Horas al Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teórica</td>
<td>4</td>
<td>64</td>
</tr>
</tbody>
</table>

Tipo: Teórica
Horas: 64
Modalidad: Curso
Duración del programa: Semestral
Seriación: Sin seriación (X)
Obligatoria ()
Indicativa ()

Objetivo general:
El objetivo de este curso es que el estudiante del Posgrado en Ciencias Biológicas pueda mediante la descripción y análisis de los procesos biológicos, en términos biofísicos y fisicoquímicos entender la fisiología celular de los organismos.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
</table>
| 1 | Conceptos de Termodinámica
1.1 Primer principio
1.1.1 Microestados y entropía: fórmula de Boltzmann
1.1.2 Distribución de partículas con la altura
1.1.3 Sistemas isotérmicos: factor de Boltzmann
1.2 Segundo principio y los sistemas biológicos
1.2.1 Potenciales termodinámicos: la energía libre de Gibbs
1.2.2 Potencial químico |
| 2 | Difusión
2.1 Cinética molecular
2.2 Movimiento browniano
2.3 Difusión de gases
2.3.1 Ley de Fick
2.3.2 Coeficiente de difusión de macromoléculas en solución
2.3.3 Difusión y flujo de materia |
| 3 | Membranas celulares
3.1 Lípidos de membranas
3.2 Proteínas de membrana
3.3 Función de las membranas biológicas |
| 4 | Transporte
4.1 Transporte pasivo a través de membranas
4.1.1 Osmosis
4.1.2 Presión osmótica
4.1.3 Permeabilidad de las membranas
4.1.4 Coeficientes de filtración mecánica y de permeabilidad |

Total de horas: 64
Suma total de horas: 64
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Transporte activo</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Transporte facilitado y activo</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Unipor, simple y antiporte</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Bombas electrogénicas</td>
</tr>
<tr>
<td>4.3</td>
<td>Canales iónicos y su dinámica</td>
</tr>
</tbody>
</table>

5	**Electrodifusión a través de membranas**
5.1	Electrolios en disolución
5.2	Equilibrio de Donnan
5.3	Equilibrio electroquímico: potencial de Nernst
5.4	Movilidad de iones en disolución
5.5	Estados estacionarios en membranas
5.6	Aproximación de campo eléctrico constante
5.7	Potencial de Goldman-Hodgkin-Katz

6	**Modelos eléctricos de las membranas**
6.1	Capacidad específica de la membrana
6.2	Resistencia de la membrana
6.3	Medidas de potencial y de intensidades
6.4	Circuito equivalente al transporte pasivo de iones
6.5	Circuito equivalentes para el transporte facilitado y activo

7	**Biofísica de la actividad eléctrica en células excitable: el sistema nervioso**
7.1	Potenciales de acción
7.2	Modelo del cable para el axón
7.3	Propagación de un potencial de acción
7.4	Modelos de excitación de la bicapa lipídica
7.5	Esquema del modelo de Hodgkin-Huxley
7.6	Umbrales de excitación

8	**Producción de energía y metabolismo**
8.1	Almacenamiento de energía
8.2	Metabolismo anaeróbico
8.3	Metabolismo aeróbico
8.4	Integración y regulación de las vías metabólicas

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
- Exposición oral (X)
- Exposición audiovisual (X)
- Ejercicios dentro de clase ()
- Ejercicios fuera del aula ()
- Seminarios (X)
- Lecturas obligatorias ()
- Trabajo de Investigación ()
- Prácticas de taller o laboratorio ()
- Prácticas de campo ()
- Otros: ()

Mecanismos de evaluación de aprendizaje de los alumnos:
- Exámenes Parciales (X)
- Examen final escrito ()
- Trabajos y tareas fuera del aula ()
- Exposición de seminarios por los alumnos (X)
- Participación en clase (X)
- Asistencia ()
- Seminario ()
- Otras: ()

Perfil profesiográfico:
El profesor o profesoras deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biofísica y fisiología celular, así como tener experiencia docente.
Denominación: BIOLOGÍA DEL DESARROLLO
Clave:
Semestre(s): 1
Campo de Conocimiento: Biología Experimental, Biomedicina
No. Créditos: 8
Carácter: Optativo de elección
Duración del programa: Semestral
Tipo: Teórica
Teoría: 4
Práctica: 0
Horas por semana: 4
Horas al Semestre: 64
Modalidad: Curso
Seriación: Sin Seriación (X)
Objetivo general: Comprender los principales procesos de determinación, diferenciación, formación de patrones corporales, morfogénesis y organogénesis durante el desarrollo ontogénico y sus bases moleculares.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td></td>
<td>1. Términos y planos anatómicos</td>
</tr>
<tr>
<td></td>
<td>1.2. Etapas del desarrollo ontogénico</td>
</tr>
<tr>
<td></td>
<td>1.3. Conceptos de morfogénesis, especificación y diferenciación regional, histogénesis y organogénesis</td>
</tr>
<tr>
<td>2</td>
<td>Desarrollo regulado y en mosaico</td>
</tr>
<tr>
<td></td>
<td>2.1. Preformismo y epigénesis</td>
</tr>
<tr>
<td></td>
<td>2.2. Bases experimentales</td>
</tr>
<tr>
<td></td>
<td>2.3. Estrategias del desarrollo en protostomados y deuterostomados</td>
</tr>
<tr>
<td></td>
<td>2.4. Áreas presuntivas organoformadoras: significado y potencialidad prospectivos</td>
</tr>
<tr>
<td></td>
<td>2.5. Concepto general de campos morfogenéticos</td>
</tr>
<tr>
<td>3</td>
<td>Mecanismos básicos del desarrollo</td>
</tr>
<tr>
<td></td>
<td>3.1. Control espacio temporal de la proliferación, muerte (apoptosis), migración y cambios de forma celulares</td>
</tr>
<tr>
<td></td>
<td>3.2. Vías de señalización en el desarrollo</td>
</tr>
<tr>
<td></td>
<td>3.2.1. Moléculas reguladoras: noggin, cordina, folistatina, cerberus, nodal, Frzb, otras)</td>
</tr>
<tr>
<td></td>
<td>3.2.2. Superfamilia del TGF b (nodal, left)</td>
</tr>
<tr>
<td></td>
<td>3.2.3. Wnt</td>
</tr>
<tr>
<td></td>
<td>3.2.4. Proteínas morfogénéticas de hueso (BMP)</td>
</tr>
<tr>
<td></td>
<td>3.3. Movimientos morfogenéticos</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>3.3.1.</td>
<td>Clasificación</td>
</tr>
<tr>
<td>3.3.2.</td>
<td>Cambios de forma y polaridad celular durante la migración</td>
</tr>
<tr>
<td>3.3.3.</td>
<td>Movimientos morfogenéticos en la gastrulación</td>
</tr>
<tr>
<td>3.3.4.</td>
<td>En diversos procesos morfogenéticos</td>
</tr>
<tr>
<td>3.3.5.</td>
<td>Participación de la matriz extracelular</td>
</tr>
<tr>
<td>3.3.6.</td>
<td>Mecanismos que guían y regulan el destino de las células</td>
</tr>
<tr>
<td>3.3.7.</td>
<td>Propiedades de los campos morfogenéticos</td>
</tr>
<tr>
<td>3.4.1.</td>
<td>Inducción primaria: experimento de Spemann y Mangold</td>
</tr>
<tr>
<td>3.4.2.</td>
<td>Inducción secundaria</td>
</tr>
<tr>
<td>3.4.3.</td>
<td>Interacciones inductivas: célula-célula, célula-matriz extracelular, mediada por reguladores químicos</td>
</tr>
<tr>
<td>3.4.4.</td>
<td>Interacción epitelio mesénquima</td>
</tr>
<tr>
<td>3.4.5.</td>
<td>Bases moleculares</td>
</tr>
<tr>
<td>3.5.1.</td>
<td>Conceptos fundamentales: potencialidad, competencia, inducción, especificación, determinación y diferenciación</td>
</tr>
<tr>
<td>3.5.2.</td>
<td>Proliferación y diferenciación</td>
</tr>
<tr>
<td>3.5.3.</td>
<td>Relación núcleo-citoplasma</td>
</tr>
<tr>
<td>3.5.4.</td>
<td>Programa del desarrollo y equivalencia genómica</td>
</tr>
<tr>
<td>3.5.5.</td>
<td>Papel del "imprinting" genómico</td>
</tr>
<tr>
<td>3.5.6.</td>
<td>Especificación y determinación: factores de transcripción, vías de señalización y síntesis diferencial del mRNA</td>
</tr>
<tr>
<td>3.5.7.</td>
<td>Establecimiento de linajes celulares, y seguimiento del linaje</td>
</tr>
<tr>
<td>3.5.8.</td>
<td>Marcadores de estirpe celular</td>
</tr>
<tr>
<td>4</td>
<td>Especificación y diferenciación de linajes celulares</td>
</tr>
<tr>
<td>4.1.</td>
<td>Linajes extraembrionarios: trofoblasto y endodermo primitivo, formación de la placenta y de las membranas extraembrionarias</td>
</tr>
<tr>
<td>4.2.</td>
<td>Especificación y migración de las células germinales</td>
</tr>
<tr>
<td>4.3.</td>
<td>Células estaminales en el embrión/feto y después del nacimiento y sus aplicaciones terapéuticas</td>
</tr>
<tr>
<td>4.4.</td>
<td>Linajes hematopoyéticos</td>
</tr>
<tr>
<td>4.5.</td>
<td>Células endoteliales: vaculogénesis y angiogénesis</td>
</tr>
<tr>
<td>4.6.</td>
<td>Desarrollo del músculo esquelético</td>
</tr>
<tr>
<td>4.7.</td>
<td>Formación de cartílago y hueso</td>
</tr>
<tr>
<td>5</td>
<td>Gastrulación y estructuración del eje antero-posterior y dorso-ventral</td>
</tr>
<tr>
<td>5.1.</td>
<td>Gastrulación y neurrulación</td>
</tr>
<tr>
<td>5.2.</td>
<td>Estructuración del eje antero-posterior y dorso-ventral</td>
</tr>
<tr>
<td>5.2.1.</td>
<td>Estructuras organizadoras: el organizador primario y centros organizadores en los vertebradosOrganizador temprano de la gástrula (EGO) y endodermo visceral anterior (AVE),</td>
</tr>
<tr>
<td>5.2.2.</td>
<td>Estudios genéticos y embriológicos</td>
</tr>
<tr>
<td>5.2.3.</td>
<td>Inducción neural y epidérmica</td>
</tr>
<tr>
<td>5.2.4.</td>
<td>Inducción de distintos tipos de mesodermo</td>
</tr>
<tr>
<td>5.2.5.</td>
<td>Especificación de la línea primitiva y organizador: rotación cortical y establecimiento de la zona de actividad dorsalisante</td>
</tr>
<tr>
<td>6</td>
<td>Asimetría y estructuración derecho-izquierda</td>
</tr>
<tr>
<td>6.1.</td>
<td>Asimetría morfológica</td>
</tr>
<tr>
<td>6.2.</td>
<td>Determinación inicial derecho-izquierda</td>
</tr>
<tr>
<td>6.3.</td>
<td>Señalización molecular (nodal, lefty)</td>
</tr>
<tr>
<td>6.4.</td>
<td>Participación de la línea media</td>
</tr>
<tr>
<td>6.4.</td>
<td>Mecanismos que general la asimetría derecho-izquierda</td>
</tr>
<tr>
<td>7</td>
<td>Regionalización y desarrollo del sistema nervioso central (SNC)</td>
</tr>
<tr>
<td>7.1.</td>
<td>Formación y desarrollo temprano del tubo neural</td>
</tr>
<tr>
<td>7.2.</td>
<td>Estructuración antero posterior de prosencéfalo, meséncefalo y metencéfalo</td>
</tr>
<tr>
<td>7.3.</td>
<td>Estructuración dorso ventral del SNC</td>
</tr>
<tr>
<td>7.4.</td>
<td>Interacciones inductivas</td>
</tr>
<tr>
<td>7.5.</td>
<td>Genes requeridos para la especificación regional del SNC</td>
</tr>
<tr>
<td>7.6.</td>
<td>Neurogénesis y especificación de subtipos neuronales</td>
</tr>
<tr>
<td>7.7.</td>
<td>Células troncales del SNC</td>
</tr>
<tr>
<td>8</td>
<td>Estructuración dorso-ventral y antero posterior del mesodermo paraxial (somitogénesis)</td>
</tr>
<tr>
<td>8.1.</td>
<td>Desarrollo de los somitas</td>
</tr>
<tr>
<td>8.2.</td>
<td>Mesodermo paraxial y células precursoras</td>
</tr>
<tr>
<td>8.3.</td>
<td>Vía se señalización Notch en la polarización antero posterior de los somitas</td>
</tr>
<tr>
<td>8.4.</td>
<td>Reloj molecular y el control de la cinética de formación de los somitas</td>
</tr>
<tr>
<td>8.5.</td>
<td>Estructuración dorsoventral de los somitas: formación y diferenciación del esclerotomo, demiomiotomo y miotomo</td>
</tr>
<tr>
<td>8.6.</td>
<td>Interacciones inductivas</td>
</tr>
</tbody>
</table>
Unidad | Tema y Subtemas
--- | ---
8 | 8.7. Genes homeóticos y determinación de la estructura segmentaria del cuerpo
9 | Organogénesis y desarrollo de los sistemas orgánicos
9.1. Secuencia de eventos: formación de primordios, especificación de tipos celulares, crecimiento y vascularización
9.2. Mecanismos generales
9.2.1. Remodelado de tejidos progenitores: condensación de células y transformación epitelio mesénquima
9.2.2. Morfogénesis por formación de yemas y ramificación
9.2.3. Compartamentalización funcional
9.3. Desarrollo del tubo digestivo y órganos asociados
9.4. Desarrollo cardíaco y enfermedades congénitas del corazón
9.5. Determinación y diferenciación sexual
9.6. Desarrollo del sistema excretor
9.7. Desarrollo craneo-facial
9.8. Desarrollo de la hipófisis
9.9. Desarrollo del ojo y oído interno
9.10. Desarrollo del sistema tegumentario
10 | Procesos de desarrollo postnatales
10.1. Crecimiento
10.1.1. Mecanismos que determinan el tamaño de los órganos
10.1.2. Determinación del tamaño corporal
10.2. Metamorfosis
10.3. Cicatrización y regeneración
10.4. Envejecimiento
11 | Alteraciones del desarrollo
11.1. Teratogénesis
11.2. Carcinogénesis
11.3. Enfermedades congénitas
12 | Seminarios especiales
12.1. Programación fetal: origen embrionario/fetal de la enfermedad
12.2. Desarrollo de tejidos u órganos por bioingeniería y su uso terapéutico

Bibliografía Básica:

Bibliografía Complementaria:
- Rossant J. & Tam P., Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the Mouse Development, 136, 2009, 701-713.

Sugerencias didácticas:

| Mecanismos de evaluación de aprendizaje de los alumnos: |
|---|---|
| Exámenes Parciales | (X) |
| Examen final escrito | () |
| Trabajos y tareas fuera del aula | (X) |
| Exposición de seminarios por los alumnos | (X) |
| Participación en clase | (X) |
| Asistencia | (X) |
| Seminario | () |
| Otras: | () |

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biología del desarrollo, así como tener experiencia docente.
Denominación: BIOLOGÍA MOLECULAR
Clave: Semester(s): 1
Campo de Conocimiento: Biología Experimental, Biomedicina
No. Créditos: 8
Carácter: Optativo de elección
Hora(s): Horas por semana: Horas al Semestre
Tipo: Teórica
Teoría: 4
Práctica: 0
4
64
Modalidad: Curso
Duración del programa: Semestral
Seriación: Sin Seriación (X) Obligatoria () Indicativa ()
Objetivo general:
Al término del curso el alumno deberá estar familiarizado con las características de las moléculas fundamentales para la vida como son las proteínas y los ácidos nucleicos. Deberá también reconocer las interacciones que realizan estas moléculas entre sí para formar estructuras importantes en el mantenimiento, duplicación y replicación de la información genética.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción y antecedentes</td>
</tr>
<tr>
<td>1.1</td>
<td>Orígenes y desarrollo de la biología molecular. Aspectos históricos.</td>
</tr>
<tr>
<td>1.2</td>
<td>Aportaciones de la microbiología al desarrollo de la biología molecular. Organismos modelo como Escherichia coli y el uso de virus.</td>
</tr>
<tr>
<td>2</td>
<td>Bases fisicoquímicas de las macromoléculas</td>
</tr>
<tr>
<td>2.1</td>
<td>Enlaces débiles, enlaces covalentes y su importancia en la determinación de la estructura de las macromoléculas</td>
</tr>
<tr>
<td>2.2</td>
<td>Estructura de las proteínas y de los ácidos nucleicos: componentes, subestructuras y complejos</td>
</tr>
<tr>
<td>2.3</td>
<td>Métodos para determinar la estructura de proteínas (cristalografía de rayos X, resonancia magnética nuclear)</td>
</tr>
<tr>
<td>2.4</td>
<td>Conocimiento de los bancos de datos de proteínas cristalizadas (Protein Data Bank, CATH, etc.). Uso de programas de computación como el SPDBV (Swiss PDB Viewer) para observar la estructura tridimensional de proteínas y ácidos nucleicos.</td>
</tr>
<tr>
<td>2.5</td>
<td>El nucleosoma y la estructura de la cromatina. Empaquetamiento de genes y formación de cromosomas.</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>3</td>
<td>Los dogmas centrales en la biología molecular: del gene a la proteína</td>
</tr>
<tr>
<td></td>
<td>3.1 Los flujos de información entre macromoléculas</td>
</tr>
<tr>
<td></td>
<td>3.2 El código genético</td>
</tr>
<tr>
<td></td>
<td>3.3 Concepto de gene. El genoma como reservorio de la información genética.</td>
</tr>
<tr>
<td>4</td>
<td>Replicación, reparación y recombinación</td>
</tr>
<tr>
<td></td>
<td>4.1 Química de la síntesis del DNA. Las DNA polimerasas. Fidelidad de la replicación. Direccionalidad de la replicación. Inicio y término</td>
</tr>
<tr>
<td></td>
<td>4.2 Los virus de RNA. Replicasas del RNA</td>
</tr>
<tr>
<td></td>
<td>4.3 Reparación del DNA: daño ambiental y mecanismos de reparación</td>
</tr>
<tr>
<td></td>
<td>4.4 Recombinación homóloga. Conversión génica. El sistema Rec</td>
</tr>
<tr>
<td></td>
<td>4.5 Transposones y retroposones</td>
</tr>
<tr>
<td></td>
<td>4.6 Secuencias de inserción, Trs, elementos P, Ac/Ds y Ty</td>
</tr>
<tr>
<td></td>
<td>4.7 Plasticidad del genoma. Contenido de DNA. Paradoja del valor C</td>
</tr>
<tr>
<td>5</td>
<td>Genética Microbiana</td>
</tr>
<tr>
<td></td>
<td>5.1 El análisis genético en biología molecular. Notación, convenciones y terminología</td>
</tr>
<tr>
<td></td>
<td>5.2 Tipos de mutantes</td>
</tr>
<tr>
<td></td>
<td>5.3 Mutágenos. Genes mutadores. Hot spots.</td>
</tr>
<tr>
<td></td>
<td>5.4 Mecanismos de transferencia de información genética en bacterias</td>
</tr>
<tr>
<td>6</td>
<td>Transcripción en organismos procarióticos</td>
</tr>
<tr>
<td></td>
<td>6.1 Organización de los genes procarióticos</td>
</tr>
<tr>
<td></td>
<td>6.2 RNA polimerasa y promotores</td>
</tr>
<tr>
<td></td>
<td>6.3 Regulación a nivel transcripcional</td>
</tr>
<tr>
<td></td>
<td>6.4 El modelo del operón</td>
</tr>
<tr>
<td></td>
<td>6.5 Regulación positiva y negativa. Represión catabólica.</td>
</tr>
<tr>
<td></td>
<td>6.6 Operones complejos: mms y gln</td>
</tr>
<tr>
<td></td>
<td>6.7 El fago lambda como modelo de regulación</td>
</tr>
<tr>
<td></td>
<td>6.8 Regulación a nivel postranscripcional</td>
</tr>
<tr>
<td>7</td>
<td>Transcripción en organismos eucarióticos</td>
</tr>
<tr>
<td></td>
<td>7.1 Organización del genoma eucariótico</td>
</tr>
<tr>
<td></td>
<td>7.2 Los tres tipos de RNA polimerasas</td>
</tr>
<tr>
<td></td>
<td>7.3 El promotor y otros elementos regulatorios. Complejos transcripcionales. Similitudes y diferencias entre procarióticos y eucarióticos.</td>
</tr>
<tr>
<td></td>
<td>7.4 Empalme de RNA. Química del empalme, maquinaria, mecanismos, empalme alternativo, trans-empalme.</td>
</tr>
<tr>
<td></td>
<td>7.5 Otras modificaciones del RNA: Cap, poli-A, splicing, edición del RNA</td>
</tr>
<tr>
<td>8</td>
<td>Traducción</td>
</tr>
<tr>
<td></td>
<td>8.1 El ribosoma, los RNA de transferencia y otros factores</td>
</tr>
<tr>
<td></td>
<td>8.2 Etapas en el proceso de la traducción; similitudes y diferencias entre procarióticos y eucarióticos</td>
</tr>
<tr>
<td></td>
<td>8.3 Iniciación, elongación y terminación. Factores que participan en cada etapa.</td>
</tr>
<tr>
<td>9</td>
<td>Regulación de la expresión genética en eucarióticos</td>
</tr>
<tr>
<td></td>
<td>9.1 Elementos regulatorios en cis: UAS, enhancers y silenciadores</td>
</tr>
<tr>
<td></td>
<td>9.2 Los diferentes dominios de unión al DNA en proteínas regulatorias: dedos de zinc, dominio hélice-vuelta-hélice, dominio hélice-loop-hélice, cierre de leucina.</td>
</tr>
<tr>
<td></td>
<td>9.3 Traducción de señales y control de los reguladores de la transcripción</td>
</tr>
<tr>
<td></td>
<td>9.4. Silenciamiento por RNAs de interferencia</td>
</tr>
<tr>
<td>10</td>
<td>Métodos en Biología Molecular</td>
</tr>
<tr>
<td></td>
<td>10.1 Las enzimas de restricción y otras enzimas que se usan en biología molecular</td>
</tr>
<tr>
<td></td>
<td>10.2 Clonación de genes</td>
</tr>
<tr>
<td></td>
<td>10.3 Técnicas básicas de aislamiento y caracterización de genes: Southern-blot, Northern-blot, Western-blot, bibliotecas de DNA y cDNA, rastro con sondas radioactivas, PCR, RT-PCR, PCR de tiempo real, “primer extension”, ensayos de protección con nucleasa S1, secuenciación, microarreglos, inmunoprecipitación de la cromatina, ensayos CHIP-chip. Next Generation Sequencing</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:
<table>
<thead>
<tr>
<th>Sugerencias didácticas</th>
<th>Mecanismos de evaluación de aprendizaje de los alumnos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral</td>
<td>Exámenes Parciales</td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td>Examen final escrito</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>Trabajos y tareas fuera del aula</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>Exposición de seminarios por los alumnos</td>
</tr>
<tr>
<td>Seminarios</td>
<td>Participación en clase</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>Asistencia</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>Seminario</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>Otras: Ensayo</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td></td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biología molecular, así como tener experiencia docente.
Denominación: BIOLOGÍA MOLECULAR EN LA GENÉTICA HUMANA
Clave: Semestre(s): 1
Campo de Conocimiento: Biomedicina
No. Créditos: 8
Carácter: Optativo de elección
Tipo: Teórica
Horas Horas por semana Horas al Semestre
Teoría: 4 Práctica: 0 4 64
Modalidad: Curso Duración del programa: Semestral

Seriación: Sin Seriación (X) Obligatoria () Indicativa ()

Objetivo general:
La forma de estudiar la Genética Humana ha sufrido grandes modificaciones debido al desarrollo de las técnicas de Biología Molecular. El asistente al curso conocerá las diversas metodologías usadas actualmente para el entendimiento de la Genética Humana.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Componentes moleculares de las células</td>
</tr>
<tr>
<td></td>
<td>1.1 Estructura química de los ácidos nucleicos</td>
</tr>
<tr>
<td></td>
<td>1.2 Nomenclatura. Clasificación. Compactación del DNA</td>
</tr>
<tr>
<td>2</td>
<td>Genética molecular</td>
</tr>
<tr>
<td></td>
<td>2.1 Replicación</td>
</tr>
<tr>
<td></td>
<td>2.1.1 Replicación semiconservativa</td>
</tr>
<tr>
<td></td>
<td>2.1.2 Origen de replicación en E. coli (Ori C)</td>
</tr>
<tr>
<td></td>
<td>2.2 Transcripción</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Genes procariontes y eucariontes</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Genes tipo I, II, III</td>
</tr>
<tr>
<td></td>
<td>2.2.3 Procesamiento del mRNA</td>
</tr>
<tr>
<td></td>
<td>2.2.4 Modificaciones postranscripcionales</td>
</tr>
<tr>
<td></td>
<td>2.2.5 Regulación genética</td>
</tr>
<tr>
<td></td>
<td>2.2.6 Operones inducibles y represibles</td>
</tr>
<tr>
<td></td>
<td>2.2.7 Atenuación y terminación</td>
</tr>
<tr>
<td></td>
<td>2.2.8 Inicio, elongación y término de la transcripción</td>
</tr>
<tr>
<td></td>
<td>2.2.9 Genes eucariontes con caja TATA y genes “housekeeping”</td>
</tr>
<tr>
<td></td>
<td>2.3 Traducción</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Componentes de la traducción</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Código genético</td>
</tr>
<tr>
<td></td>
<td>2.3.3 Regulación de la traducción</td>
</tr>
<tr>
<td></td>
<td>2.3.4 Modificaciones postraduccionales</td>
</tr>
<tr>
<td>3</td>
<td>Transmisión de señales en la célula</td>
</tr>
</tbody>
</table>

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Teóricas</td>
</tr>
<tr>
<td>1</td>
<td>Componentes moleculares de las células</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Genética molecular</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Transmisión de señales en la célula</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Ciclo celular</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Métodos básicos de la biología molecular</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Patrones de herencia en humanos</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>La biología molecular en la genética humana</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>64</td>
</tr>
</tbody>
</table>

Contenido Temático
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Ciclo celular</td>
</tr>
<tr>
<td>4.1</td>
<td>Fases del ciclo celular</td>
</tr>
<tr>
<td>4.2</td>
<td>Ciclinas y ciclinas dependientes de cinasas</td>
</tr>
<tr>
<td>4.3</td>
<td>Genes reguladores del ciclo celular y "check points" (p53, Rb y ATM)</td>
</tr>
<tr>
<td>5</td>
<td>Métodos básicos de la biología molecular</td>
</tr>
<tr>
<td>5.1</td>
<td>La técnica de DNA recombinante</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Enzimas de restricción, mapas de restricción</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Técnicas de secuenciación de ácidos nucleicos</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Vehículos de clonación, plásmidos, bacteriófagos, cósmidos, cromosomas artificiales de levadura (Yac's)</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Genotecas de cDNA y genómicas</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Sondas. Métodos para obtener y marcar sondas, Tamizaje ("screening") de genotecas</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Estudio de fragmentos clonados. Expresión de los fragmentos clonados, secuenciación de fragmentos clonados, análisis computacional de los fragmentos clonados</td>
</tr>
<tr>
<td>5.1.7</td>
<td>Uso de los fragmentos clonados en la expresión</td>
</tr>
<tr>
<td>5.2</td>
<td>La técnica de amplificación en cadena de la polimerasa ("PCR")</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Los diversos componentes de la reacción de amplificación</td>
</tr>
<tr>
<td>5.2.2</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>5.2.3</td>
<td>PCR cuantitativo</td>
</tr>
<tr>
<td>5.3</td>
<td>Citogenética molecular</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Híbridación in situ fluorescente ("Fish")</td>
</tr>
<tr>
<td>5.3.2</td>
<td>FISH multicolor</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Híbridación genómica comparativa</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Híbridación in situ para RNA</td>
</tr>
<tr>
<td>6</td>
<td>Patrones de herencia en humanos</td>
</tr>
<tr>
<td>6.1</td>
<td>Desórdenes mendelianos</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Herencia autosómica dominante, penetrancia, expresividad, heterogeneidad genética</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Herencia autosómica recesiva, ligada al cromosoma X, inactivación del cromosoma X, mosaico</td>
</tr>
<tr>
<td>6.2</td>
<td>Aberraciones cromosómicas</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Los cromosomas, tipos, formas y estructura molecular</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Técnicas de tinción de los cromosomas</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Cariotipo</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Variaciones en los cromosomas y alteraciones fenotípicas, euploidias, aneuploidias, translocaciones, delecciones e inversiones, mosaico somático, Impresión ("imprinting") genética, Disomia uniparental</td>
</tr>
<tr>
<td>6.3</td>
<td>Herencia mitocondrial</td>
</tr>
<tr>
<td>6.3.1</td>
<td>El genoma mitocondrial</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Enfermedades asociadas al genoma mitocondrial</td>
</tr>
<tr>
<td>6.3.3</td>
<td>El genoma mitocondrial en estudios evolutivos</td>
</tr>
<tr>
<td>6.4</td>
<td>Expansión del DNA. El fenómeno de anticipación, expansión de trinucleófitos y enfermedades hereditarias</td>
</tr>
<tr>
<td>7</td>
<td>La biología molecular en la genética humana</td>
</tr>
<tr>
<td>7.1</td>
<td>Estrategias para clonar genes humanos</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Clonaje posicional o genética reversa. Mapeo de genes por células somáticas híbridas, localización de genes en los cromosomas por hibridación in situ, fragmentos de restricción polimórficos en el tamaño (RFLP's) y secuencias repetidas en tándem (VNTR's)</td>
</tr>
<tr>
<td>7.2</td>
<td>Diagnóstico molecular de enfermedades hereditarias mediante DNA</td>
</tr>
<tr>
<td>7.2.1</td>
<td>RFLP's y VNTR's en el diagnóstico de padecimientos hereditarios de Humanos</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Análisis de delecciones mediante Southern</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Método de mediación de la ligasa en el diagnóstico molecular</td>
</tr>
<tr>
<td>7.2.4</td>
<td>PCR y el diagnóstico molecular, ensayos múltiplex, Dx de enfermedades por PCR</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Diversos métodos para detectar mutaciones puntuales, ensayo de oligonucleótido alelo-específico, ("ASO"), análisis conformacional en cadena sencilla ("SSCP"), análisis de Heteroduplex ("HA"), electroforesis en geles de gradiente desnaturalizantes ("DGGE"), corte químico de malos - Ensayo apareamientos ("CCM"), de proteína truncada ("PTT"), secuenciación directa</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Las huellas de DNA</td>
</tr>
<tr>
<td>7.3</td>
<td>Terapia Génica</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Vehículos para movilizar genes, mioblastos, virus, liposomas</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Modelos animales para terapia génica</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Terapia génica en humanos</td>
</tr>
<tr>
<td>7.4</td>
<td>El proyecto Genoma Humano</td>
</tr>
<tr>
<td>7.5</td>
<td>Las implicaciones sociales y éticas del diagnóstico molecular, terapia génica y del proyecto genoma humano</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

<table>
<thead>
<tr>
<th>Sugerencias didácticas:</th>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral (X)</td>
<td>Exámenes Parciales (X)</td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td>Examen final escrito (X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>Trabajos y tareas fuera del aula (X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula (X)</td>
<td>Exposición de seminarios por los alumnos (X)</td>
</tr>
<tr>
<td>Seminarios (X)</td>
<td>Participación en clase (X)</td>
</tr>
<tr>
<td>Lecturas obligatorias (X)</td>
<td>Asistencia (X)</td>
</tr>
<tr>
<td>Trabajo de Investigación (X)</td>
<td>Seminario ()</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio ()</td>
<td>Otras:</td>
</tr>
<tr>
<td>Prácticas de campo ()</td>
<td></td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biología molecular en genética humana, así como tener experiencia docente.
Programa de actividad académica

Denominación: BIOQUÍMICA

Clave: Semestre(s): 1
Carácter: Optativo de elección
Tipo: Teórica
Horas

No. Créditos: 8
Campo de Conocimiento: Biología Experimental, Biomedicina

Horas por Semestre

Horas al Semestre

Duración del programa: Semestral

Seriación: Sin Seriación (X) Obligatoria () Indicativa ()

Objetivo general:
Analizar la composición y organización molecular de los seres vivos, estudiando la estructura y función de proteínas y enzimas, la organización de la célula y los mecanismos regulatorios que integran las redes metabólicas y de señalización en los sistemas biológicos.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas Teóricas</th>
<th>Horas Prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Agua y sus propiedades</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Química del carbono</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Aminoácidos y proteínas</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Enzimas</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Biomembranas</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Termodinámica y Bioenergética</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Regulación e integración metabólica</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Fosforilación oxidativa y fotofosforilación</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Transducción de señales</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Suma total de horas:</td>
<td>64</td>
<td>0</td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td></td>
<td>1.1 Orígenes y desarrollo de la Bioquímica</td>
</tr>
<tr>
<td></td>
<td>1.2 La lógica molecular de los seres vivos</td>
</tr>
<tr>
<td>2</td>
<td>Agua y sus propiedades</td>
</tr>
<tr>
<td></td>
<td>2.1 Moléculas polares, no polares, antipáticas</td>
</tr>
<tr>
<td></td>
<td>2.2 Interacciones débiles: puentes de hidrógeno, fuerzas de van der Waals, etc.</td>
</tr>
<tr>
<td></td>
<td>2.3 Propiedades físicas del agua</td>
</tr>
<tr>
<td></td>
<td>2.4 Estructura del agua, líquida</td>
</tr>
<tr>
<td></td>
<td>2.5 El agua como solvente y osmolaridad</td>
</tr>
<tr>
<td></td>
<td>2.6 Conceptos de ácidos, bases, pH, pK, amortiguadores</td>
</tr>
<tr>
<td>3</td>
<td>Química del carbono</td>
</tr>
<tr>
<td></td>
<td>3.1 Propiedades del átomo de carbono</td>
</tr>
<tr>
<td></td>
<td>3.2 Reactividad del carbono con otros átomos para formar grupos funcionales</td>
</tr>
<tr>
<td>4</td>
<td>Aminoácidos y proteínas</td>
</tr>
<tr>
<td></td>
<td>4.1 Clasificación de los aminoácidos</td>
</tr>
<tr>
<td></td>
<td>4.2 Propiedades de los aminoácidos: grado de polaridad de la cadena lateral, comportamiento ácido-base, punto isoeléctrico, absorción de luz, reactividad de las cadenas laterales, aminoácidos esenciales</td>
</tr>
<tr>
<td></td>
<td>4.3 Péptidos y enlace peptídico</td>
</tr>
<tr>
<td></td>
<td>4.4 Proteínas</td>
</tr>
<tr>
<td></td>
<td>4.4.1 Funciones</td>
</tr>
<tr>
<td></td>
<td>4.4.2 Clasificación</td>
</tr>
<tr>
<td></td>
<td>4.4.3 Estructura de las proteínas: primaria, secundaria, terciaria, cuaternaria y quinaria</td>
</tr>
<tr>
<td></td>
<td>4.4.4 Fuerzas no covalentes en la estructura proteica</td>
</tr>
<tr>
<td></td>
<td>4.4.5 Patrones básicos de plegamiento</td>
</tr>
<tr>
<td></td>
<td>4.4.6 Formación de oligómeros</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>4.4.7</td>
<td>Estructura supersecundaria, dominios, estructura modular y evolución de proteínas</td>
</tr>
<tr>
<td>4.4.8</td>
<td>Familias y superfamilias de proteínas</td>
</tr>
<tr>
<td>4.5</td>
<td>Plegamiento nativo y desnaturización</td>
</tr>
<tr>
<td>4.6</td>
<td>Determinación y predicción de la estructura tridimensional, predicción de la función a partir de la secuencia y estructura</td>
</tr>
<tr>
<td>4.7</td>
<td>Interacción de proteínas con otras moléculas</td>
</tr>
<tr>
<td>4.8</td>
<td>Actividad: Los alumnos aprenderán a utilizar bases de datos de proteínas cristalizadas y con ellas utilizarán programas de cómputo que permiten visualizar la estructura de una proteína así como las interacciones entre los aminoácidos que la conforman (y sus grupos funcionales) para un mayor entendimiento de las diferentes estructuras que se pueden formar con una secuencia de aminoácidos.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Enzimas</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Clasificación y nomenclatura</td>
</tr>
<tr>
<td>5.2</td>
<td>Sito catalítico y sitios alostéricos</td>
</tr>
<tr>
<td>5.3</td>
<td>Residuos y unidades catalíticos</td>
</tr>
<tr>
<td>5.4</td>
<td>Cofactores y coenzimas</td>
</tr>
<tr>
<td>5.5</td>
<td>Cinética enzimática</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Generalidades sobre cinética química</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Modificación química de proteínas mediante reactivos específicos de grupo</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Cinética enzimática de sistemas unireactantes</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Cinética de sistemas multireactantes</td>
</tr>
<tr>
<td>5.5.5</td>
<td>Cálculo de parámetros cinéticos</td>
</tr>
<tr>
<td>5.5.6</td>
<td>Deducción de ecuaciones por el método de King-Altman</td>
</tr>
<tr>
<td>5.5.7</td>
<td>Determinación de mecanismos cinéticos por estudios de velocidades iniciales</td>
</tr>
<tr>
<td>5.5.8</td>
<td>Cinética y activación de la actividad enzimática</td>
</tr>
<tr>
<td>5.5.9</td>
<td>Determinación de mecanismos cinéticos por estudios de inhibición por productos y análogos de sustratos y productos</td>
</tr>
<tr>
<td>5.5.10</td>
<td>Efecto del pH sobre la catálisis enzimática</td>
</tr>
<tr>
<td>5.5.11</td>
<td>Efecto de la temperatura sobre la catálisis enzimática</td>
</tr>
<tr>
<td>5.6</td>
<td>Comportamiento cinético oscilatorio</td>
</tr>
<tr>
<td>5.7</td>
<td>Mecanismos de catálisis enzimática</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Biomembranas</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Estructura de los lípidos</td>
</tr>
<tr>
<td>6.2</td>
<td>Estructura y modelos de membrana</td>
</tr>
<tr>
<td>6.3</td>
<td>Seminario: microdominios: balsas lipídicas</td>
</tr>
<tr>
<td>6.4</td>
<td>Proteínas de membrana: transmembrana, ancladas por glucosil-fosfatidil inositol</td>
</tr>
<tr>
<td>6.5</td>
<td>Interacciones lipido-proteína</td>
</tr>
<tr>
<td>6.6</td>
<td>Métodos de estudio</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Termodinámica y Bioenergética</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Leyes de la termodinámica</td>
</tr>
<tr>
<td>7.2</td>
<td>Sistemas y funciones termodinámicas, conceptos de energía libre, entropía, entalpía</td>
</tr>
<tr>
<td>7.3</td>
<td>Reacciones químicas y el cambio en la energía libre</td>
</tr>
<tr>
<td>7.4</td>
<td>ATP y la transferencia de grupos fosforilo. Importancia de acoplar la hidrólisis del ATP a reacciones termodinámicamente desfavorables</td>
</tr>
<tr>
<td>7.5</td>
<td>Reacciones de oxidación y reducción biológicas. Potenciales redox y transferencia de electrones</td>
</tr>
<tr>
<td>7.6</td>
<td>Estado al equilibrio y estado estable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Regulación e integración metabólica</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Metabolismo, anabolismo y catabolismo, moléculas que intervienen en el flujo de energía</td>
</tr>
<tr>
<td>8.2</td>
<td>Pasos limitantes en la regulación de vías metabólicas</td>
</tr>
<tr>
<td>8.3</td>
<td>Análisis de control metabólico y coeficientes de control de flujo</td>
</tr>
<tr>
<td>8.4</td>
<td>Regulación por retroalimentación</td>
</tr>
<tr>
<td>8.5</td>
<td>Bosquejo general de vías metabólicas, vías centrales del metabolismo</td>
</tr>
<tr>
<td>8.6</td>
<td>Glucólisis. Fases de inversión y de generación de energía. Regulación</td>
</tr>
<tr>
<td>8.7</td>
<td>Ciclo del ácido cítrico. Introducción y pérdida de 2 átomos de carbono. Regeneración de oxalacetato. Regulación</td>
</tr>
<tr>
<td>8.8</td>
<td>Gluconeogénesis. Regulación</td>
</tr>
<tr>
<td>8.9</td>
<td>Regulación del metabolismo por: modificación covalente (fosforilación y desfosforilación)</td>
</tr>
<tr>
<td>8.10</td>
<td>Transporte de metabolitos y regulación metabólica</td>
</tr>
<tr>
<td>8.11</td>
<td>Regulación dependiente de metabolitos: protein cinasa dependiente de AMP</td>
</tr>
<tr>
<td>8.12</td>
<td>Especialización metabólica en los órganos. Isoenzimas</td>
</tr>
<tr>
<td>8.13</td>
<td>Integración del metabolismo y regulación concertada</td>
</tr>
<tr>
<td>8.14</td>
<td>Modelaje de vías metabólicas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Fosforilación oxidativa y fotofosforilación</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Estructura de las mitocondrias, reacciones metabólicas que ocurren en el organelo. Transferencia de electrones por los cuatro complejos respiratorios en la mitocondria y mecanismo de síntesis de ATP</td>
</tr>
<tr>
<td>9.2</td>
<td>Regulación de la fosforilación oxidativa</td>
</tr>
<tr>
<td>9.3</td>
<td>La mitocondria es un organelo que importa a la mayoría de sus proteínas</td>
</tr>
<tr>
<td>9.4</td>
<td>Características generales de la fotofosforilación, estructura de los cloroplastos</td>
</tr>
<tr>
<td>9.5</td>
<td>Absorción de la luz, análisis de los diferentes tipos de fotosistemas y complejos protécicos que intervienen en la transferencia de electrones</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td>9.6</td>
<td>El flujo de electrones motivado por la luz, la reacción de fotólisis del agua</td>
</tr>
<tr>
<td>9.7</td>
<td>Síntesis de ATP por la fotosferilación</td>
</tr>
<tr>
<td>9.8</td>
<td>El cloroplasto es un organelo con información genética y que importa una gran cantidad de sus proteínas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>transducción de señales</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Estrategias de señalización: proteína cinasas, proteínas G y proteínas acopladoras</td>
</tr>
<tr>
<td>10.2 Etapas de la transducción de señales</td>
</tr>
<tr>
<td>10.3 Receptores intracelulares y su mecanismo de señalización</td>
</tr>
<tr>
<td>10.4 Receptores de la superficie celular: Clasificación, estructura</td>
</tr>
<tr>
<td>10.5 Receptores acoplados a proteínas G triméricas: señalización mediada por cAMP y mediada por fosfatidil inositol 3 fosfato y diacilglicerol</td>
</tr>
<tr>
<td>10.6 Receptores tipo tirosina cinasas</td>
</tr>
<tr>
<td>10.7 Transmisión de señales asociada al receptor de insulina</td>
</tr>
<tr>
<td>10.8 Receptores de citocinas clase I y II</td>
</tr>
<tr>
<td>10.9 Receptores de antígenos de las células hematopoyéticas</td>
</tr>
<tr>
<td>10.10 Receptores tipo Ser/Tre cinasas</td>
</tr>
<tr>
<td>10.11 Vías de transmisión de señales</td>
</tr>
<tr>
<td>10.11.1 Vía de la fosfatidil inositol 3’ cinasa</td>
</tr>
<tr>
<td>10.11.2 Vía de la fosfolipasa C g</td>
</tr>
<tr>
<td>10.11.3 Vía Ras-MAP cinasas</td>
</tr>
<tr>
<td>10.11.4 Vía de los factores STAT</td>
</tr>
<tr>
<td>10.11.5 Vía del NF k B</td>
</tr>
<tr>
<td>10.12 Regulación de la magnitud y duración de la señal</td>
</tr>
<tr>
<td>10.13 Transmisión de señales y enfermedad</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
Exposición oral	(X)
Exposición audiovisual	(X)
Ejercicios dentro de clase	(X)
Ejercicios fuera del aula	(X)
Seminarios	(X)
Lecturas obligatorias	(X)
Trabajo de Investigación	()
Prácticas de taller o laboratorio	()
Prácticas de campo	()
Otros:	()

Mecanismos de evaluación de aprendizaje de los alumnos:
Exámenes Parciales	(X)
Examen final escrito	()
Trabajos y tareas fuera del aula	(X)
Exposición de seminarios por los alumnos	(X)
Participación en clase	(X)
Asistencia	()
Seminario	()
Otras:	()

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en bioquímica, así como tener experiencia docente.
Denominación: FARMACOLOGÍA

Clave: Semestre(s): 1

Campo de Conocimiento: Biomedicina

No. Créditos: 8

Carácter: Optativo de elección

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Teoría</th>
<th>Práctica</th>
<th>Horas por semana</th>
<th>Horas al Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teórica</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>64</td>
</tr>
</tbody>
</table>

Modalidad: Curso

Duración del programa: Semestral

Seriación: Sin Seriación (X)

Objetivo general: Que los alumnos conozcan los conceptos y objetivos de la Farmacología

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
<th>Teóricas</th>
<th>Prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción a la Farmacología</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Farmacocinética</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Farmacodinamia</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Interacción Farmacocinética-Farmacodinámica</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Farmacología preclínica y clínica</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total de horas: 64

Suma total de horas: 64

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción a la Farmacología</td>
</tr>
<tr>
<td>1.1 Introducción y ramas de la Farmacología</td>
<td></td>
</tr>
<tr>
<td>1.2 Concepto de fármaco y medicamento</td>
<td></td>
</tr>
<tr>
<td>1.3 Efecto, respuesta, mecanismo de acción y sitio de acción</td>
<td></td>
</tr>
<tr>
<td>1.4 Dosis</td>
<td></td>
</tr>
<tr>
<td>1.5 Efectos terapéutico, secundario y tóxico</td>
<td></td>
</tr>
<tr>
<td>1.6 Índice terapéutico y otros indicadores de inocuidad</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Farmacocinética</td>
</tr>
<tr>
<td>2.1 Absorción de fármacos</td>
<td></td>
</tr>
<tr>
<td>2.1.1 Factores que modifican la absorción de fármacos</td>
<td></td>
</tr>
<tr>
<td>2.1.2 Mecanismos de absorción de fármacos</td>
<td></td>
</tr>
<tr>
<td>2.1.3 El paso de los fármacos a través de membranas biológicas</td>
<td></td>
</tr>
<tr>
<td>2.1.4 Efecto del primer paso</td>
<td></td>
</tr>
<tr>
<td>2.2 Distribución de los fármacos</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Volumen aparente de distribución</td>
<td></td>
</tr>
<tr>
<td>2.2.2 Unión a proteínas plasmáticas</td>
<td></td>
</tr>
<tr>
<td>2.2.3 El paso de los fármacos al sistema nervioso central</td>
<td></td>
</tr>
<tr>
<td>2.2.4 El paso placental de fármacos</td>
<td></td>
</tr>
<tr>
<td>2.2.5 Acumulación en depósitos</td>
<td></td>
</tr>
<tr>
<td>2.3 Metabolismo de fármacos</td>
<td></td>
</tr>
<tr>
<td>2.3.1 Reacciones de fase I y fase II</td>
<td></td>
</tr>
<tr>
<td>2.3.2 Profármacos</td>
<td></td>
</tr>
<tr>
<td>2.3.3 Multiples formas moleculares del citocromo P450</td>
<td></td>
</tr>
<tr>
<td>2.3.4 Inducción y activación enzimática (agentes inductores y activadores del metabolismo)</td>
<td></td>
</tr>
<tr>
<td>2.3.5 Tolerancia. Dependencia</td>
<td></td>
</tr>
<tr>
<td>2.4 Excreción de fármacos</td>
<td></td>
</tr>
<tr>
<td>2.4.1 Vías principales</td>
<td></td>
</tr>
<tr>
<td>2.4.2 Excreción renal de los fármacos y factores que la modifican</td>
<td></td>
</tr>
<tr>
<td>2.5 Reabsorción de fármacos</td>
<td></td>
</tr>
<tr>
<td>2.5.1 Vías principales</td>
<td></td>
</tr>
<tr>
<td>2.5.2 Compuestos que modifican la reabsorción de fármacos</td>
<td></td>
</tr>
<tr>
<td>2.6 Parámetros farmacocinéticos (conceptos y cálculos)</td>
<td></td>
</tr>
<tr>
<td>2.6.1 Cinéticas de primer orden y de orden cero</td>
<td></td>
</tr>
<tr>
<td>2.6.2 Biodisponibilidad</td>
<td></td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Constante de absorción (Ka) y de eliminación (Ke)</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Área bajo la curva concentración plasmática vs. tiempo (AUC)</td>
</tr>
<tr>
<td>2.6.5</td>
<td>Cantidad de fármaco absorbido</td>
</tr>
<tr>
<td>2.6.6</td>
<td>Volumen de distribución (VD)</td>
</tr>
<tr>
<td>2.6.7</td>
<td>Depuración ó “clearance” (CL)</td>
</tr>
<tr>
<td>2.6.8</td>
<td>Tiempo de semivida plasmática (t ½)</td>
</tr>
<tr>
<td>2.6.9</td>
<td>Modelo farmacocinético-farmacodinámico: concepto y modelos (lineal, logarítmico, Emax y sigmoideo Emax)</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Curvas concentración plasmática vs. tiempo para múltiples dosis</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Regímenes de dosificación</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Estimación y cálculo de los distintos parámetros farmacocinéticos para dosis múltiples</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Cálculo de la concentración plasmática máxima (Cpmax) y la concentración plasmática mínima (Cpmin) en el estado estacionario</td>
</tr>
<tr>
<td>2.7.5</td>
<td>Concepto de dosis de carga</td>
</tr>
<tr>
<td>2.7.6</td>
<td>Concepto de intervalo de dosis y coeficiente de acumulación. Infusión endovenosa continua y discontinua</td>
</tr>
<tr>
<td>2.7.7</td>
<td>Concepto de constante de infusión (Ko). Monitorización de fármacos. Cálculo de pautas de dosificación utilizando criterios farmacocinéticos</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Farmacocinética-Farmacodinámica</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Principios de la acción farmacológica: tipos de acciones farmacológicas y blancos de acción farmacológica</td>
</tr>
<tr>
<td>3.2</td>
<td>Mecanismos moleculares de la acción farmacológica</td>
</tr>
<tr>
<td>3.3</td>
<td>Acciones farmacológicas mediadas por receptores</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Concepto de receptor, agonista y antagonista</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Tipos de antagonismo</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Acciones farmacológicas no mediadas por receptores</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Interacción entre fármacos y receptores</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Aspectos cuantitativos de la interacción entre fármacos y receptores</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Actividad intrínseca</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Clasificación de agonistas y antagonistas</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Familias de receptores</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Estructura y mecanismos de transducción de señales</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Activación de enzimas</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Ionóforos</td>
</tr>
<tr>
<td>3.7.5</td>
<td>Receptores hormonales</td>
</tr>
<tr>
<td>3.7.6</td>
<td>Receptores que regulan la transcripción de ADN</td>
</tr>
<tr>
<td>3.8</td>
<td>Farmacometría</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Interacción Farmacocinética-Farmacodinámica</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Factores fisiológicos, patológicos, genéticos e interacciones farmacológicas que afectan la seguridad y efectividad de los fármacos</td>
</tr>
<tr>
<td>4.2</td>
<td>Terapia individualizada</td>
</tr>
<tr>
<td>4.3</td>
<td>Interacciones medicamentosas de tipo farmacocinético y farmacodinámico que modifican la efectividad y/o la seguridad de los fármacos</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Farmacología preclínica y clínica</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Farmacología preclínica. Métodos experimentales necesarios para realizar el perfil farmacológico de una sustancia con potencial efecto terapéutico</td>
</tr>
<tr>
<td>5.2</td>
<td>Características de los estudios preclínicos y de toxicidad</td>
</tr>
<tr>
<td>5.3</td>
<td>Farmacología clínica. Fases de un estudio clínico y sus correspondientes características</td>
</tr>
<tr>
<td>5.4</td>
<td>Diseño e importancia de los estudios clínicos</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:
Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Actividad</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral</td>
<td>(X)</td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td>()</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X)</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>()</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

<table>
<thead>
<tr>
<th>Evaluación</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exámenes Parciales</td>
<td>(X)</td>
</tr>
<tr>
<td>Examen final escrito</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
<td>()</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
<td>(X)</td>
</tr>
<tr>
<td>Participación en clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Asistencia</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminario</td>
<td>()</td>
</tr>
<tr>
<td>Otras:</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en farmacología, así como tener experiencia docente.
Denominación: FUNDAMENTOS DE LAS TECNICAS DE BIOLOGÍA MOLECULAR
Clave: Semestre(s): 1
Carácter: Optativo de elección
Tipo: Teórica
Horas: Teoría: 4 Práctica: 0
Horas por semana: 4 Horas al Semestre: 64
Modalidad: Curso Duración del programa: Semestral

Objetivo general:
El curso tiene como objetivo principal mostrar, entender y discutir las bases de las técnicas básicas en Biología Molecular, para que al final del curso los alumnos puedan resolver problemas reales que se presentan en los laboratorios de Biología Molecular.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conceptos básicos en Biología Molecular</td>
</tr>
<tr>
<td>2</td>
<td>Extracción y Manipulación de ácidos nucleicos (AN)</td>
</tr>
<tr>
<td>2.1</td>
<td>Etapas básicas de un procedimiento general para Extracción y Purificación de AN</td>
</tr>
<tr>
<td>2.2</td>
<td>Métodos de fragmentación y lisis</td>
</tr>
<tr>
<td>2.3</td>
<td>Eliminación de restos celulares</td>
</tr>
<tr>
<td>2.4</td>
<td>Desproteínización</td>
</tr>
<tr>
<td>2.5</td>
<td>Cromatografía de intercambio aniónico</td>
</tr>
<tr>
<td>2.6</td>
<td>Extracción de DNA desde un gel de agarosa</td>
</tr>
<tr>
<td>2.7</td>
<td>Extracción fenólica de proteínas</td>
</tr>
<tr>
<td>2.8</td>
<td>Análisis espectrofotométrico y criterios de pureza</td>
</tr>
<tr>
<td>2.9</td>
<td>Factores que afectan el rendimiento, calidad y pureza de los AN purificados</td>
</tr>
<tr>
<td>2.10</td>
<td>Métodos específicos</td>
</tr>
<tr>
<td>3</td>
<td>Endonucleasas o enzimas de restricción</td>
</tr>
<tr>
<td>3.1</td>
<td>Tipos de enzimas de restricción</td>
</tr>
<tr>
<td>3.2</td>
<td>Nomenclatura y ejemplos de enzimas de restricción</td>
</tr>
<tr>
<td>3.3</td>
<td>Mecanismos de acción de las enzimas de restricción</td>
</tr>
<tr>
<td>3.4</td>
<td>Usos de las enzimas de restricción</td>
</tr>
<tr>
<td>3.5</td>
<td>Manipulación de DNA y RNA con enzimas de restricción</td>
</tr>
</tbody>
</table>

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Teóricas</td>
</tr>
<tr>
<td>1</td>
<td>Conceptos básicos en Biología Molecular</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Extracción y Manipulación de ácidos nucleicos (AN)</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Endonucleasas o enzimas de restricción</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Técnicas de hibridación</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Reacción en cadena de la polimerasa</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Bibliotecas genómicas (genotecas)</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Secuenciación de DNA</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>Mutagénesis: fundamentos y aplicaciones en cada caso</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>Transfecciones</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>Análisis de proteínas</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>Citogenética molecular</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>El fundamento de la tecnología empleada en microarrays</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>64</td>
</tr>
</tbody>
</table>

Suma total de horas: 64

Contenido Temático
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
</table>
| 4 | Técnicas de hibridación
| | 4.1 Marcaje de oligonucleótidos
| | 4.2 Selección y marcaje de sondas
| | 4.3 Ejemplos y aplicaciones: Southern blot, Northern blot, hibridación in situ, microarrays, PCR |
| 5 | Reacción en cadena de la polimerasa
| | 5.1 Fundamentos de la técnica
| | 5.2 Tipos más usuales de PCRs
| | 5.3 Mezcla de reacción
| | 5.4 Aplicaciones en las ciencias médico biológicas |
| 6 | Bibliotecas genómicas (genotecas)
| | 6.1 Aislamiento y digestión parcial de DNA total de alto peso molecular
| | 6.2 Evaluación del tamaño de los insertos
| | 6.3 Llenado parcial de los fragmentos Sau3AI y ligación con el vector
| | 6.4 Empaquetamiento y título del fago empaquetado
| | 6.5 Caracterización de la biblioteca genómica
| | 6.6 Aplicaciones de una genoteca |
| 7 | Secuenciación de DNA
| | 7.1 Estrategias de secuenciación
| | 7.2 Preparación de moldes
| | 7.3 Método dideoxídeo o de Sanger
| | 7.4 Nuevas plataformas (picrosecuenciación, Solid)
| | 7.5 Aplicaciones |
| 8 | Mutagénesis: fundamentos y aplicaciones en cada caso
| | 8.1 Mutagénesis de DNA clonado
| | 8.2 Mutagénesis dirigida sin selección definida
| | 8.3 Mutagénesis con oligos degenerados
| | 8.4 Síntesis de Genes: ensamblaje de secuencias blanco utilizando oligonucleótidos largos
| | 8.5 Mutagénesis en regiones específicas
| | 8.6 Mutagénesis por PCR |
| 9 | Transfecciones
| | 9.1 Transfección en células eucariontes
| | 9.2 Transfecciones con fosfato de calcio Ca(PO₄)₂
| | 9.3 Liposomas y otros nuevos vectores
| | 9.4 Transferencias estable
| | 9.5 Transferencias transitorias |
| 10 | Análisis de proteínas
| | 10.1 Métodos de cuantificación y preparación de proteínas. Métodos de migración diferencial (electroforesis, cromatografía y centrifugación).
| | 10.2 Métodos de análisis estructural (espectrometría de masas, NMR, cristalografía)
| | 10.3 Expresión de proteínas recombinantes. Purificación de proteínas (Exclusión molecular, Intercambio iónico, Cromatografía Líquida de Alta Resolución, Cromatografía de afinidad, Cromatografía por intercambio de metales)
| | 10.4 Proteómica (Electroforesis Bidimensional, Visualización de proteínas y análisis de imagen, Proteómica de expresión diferenciada, Análisis por espectrometría de masas: Huella peptídica (MALDI-TOF) y Secuenciación mediante espectrometría de masas en tándem).
| | 10.5 Alineamientos de secuencias
| | 10.6 Predicción de estructura proteica: Modelado por homología |
| 11 | Citogenética Molecular
| | 11.1 Hibridación fluorescente in situ (FISH)
| | 11.2 Hibridación genómica comparativa (CGH) |
| 12 | El fundamento de la tecnología empleada en microarrays
| | 12.1 Componentes de un experimento de microarrays
| | 12.2 Diseño experimental
| | 12.3 Muestras biológicas
| | 12.4 Tipos de microarrays
| | 12.5 Consideraciones técnicas
| | 12.6 Análisis de los datos
| | 12.7 Métodos de Agrupamiento y Visualización de los datos
| | 12.8 Interpretación de los datos: data mining
| | 12.9 Reporte de los datos
| | 12.10 Next Generation Sequencing |
Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
<table>
<thead>
<tr>
<th>Exposición oral</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición audiovisual</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X)</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>()</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:
<table>
<thead>
<tr>
<th>Exámenes Parciales</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examen final escrito</td>
<td>()</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
<td>(X)</td>
</tr>
<tr>
<td>Participación en clase</td>
<td>()</td>
</tr>
<tr>
<td>Asistencia</td>
<td>()</td>
</tr>
<tr>
<td>Seminario</td>
<td>(X)</td>
</tr>
<tr>
<td>Otras: Ensayo</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biología molecular, así como tener experiencia docente.
Denominación: INMUNOLOGÍA AVANZADA: MOLECULAS DE LA RESPUESTA INMUNE

<table>
<thead>
<tr>
<th>Clave: Semestre(s): 1</th>
<th>Campo de Conocimiento: Biología Experimental, Biomedicina</th>
<th>No. Créditos: 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carácter: Optativo de elección</td>
<td>Horas</td>
<td>Horas por semana</td>
</tr>
<tr>
<td>Tipo: Teórica</td>
<td>Teoría: 4</td>
<td>4</td>
</tr>
<tr>
<td>Modalidad: Curso</td>
<td>Práctica: 0</td>
<td>64</td>
</tr>
<tr>
<td>Duración del programa: Semestral</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seriación: Sin Seriación (X) Obligatoria () Indicativa ()

Objetivo general:
El objetivo es ofrecer un panorama actualizado de los mecanismos moleculares que ocurren en la respuesta inmune, que permita al alumno el dominio de la información básica y actualizada, necesaria en su formación y con la posibilidad de que incremente alternativas de análisis o aplicación a sus proyectos de investigación, basándose en métodos inmunológicos.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Teóricas</td>
</tr>
<tr>
<td>1</td>
<td>Introducción a la respuesta inmune</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Mecanismos opsónicos y no opsónicos de Fagocitosis</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Regulación del Sistema del Complemento</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Inflamación</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Receptores para antígeno</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>Complejo Principal de Histocompatibilidad</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>Moléculas de la familia CD1</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Suma total de horas:</td>
<td>64</td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción a la respuesta inmune</td>
</tr>
<tr>
<td>1.1</td>
<td>Generalidades de la respuesta inmune</td>
</tr>
<tr>
<td>1.2</td>
<td>Antigenicidad e inmunogenicidad</td>
</tr>
<tr>
<td>2</td>
<td>Mecanismos opsónicos y no opsónicos de Fagocitosis</td>
</tr>
<tr>
<td>2.1</td>
<td>Mecanismos de adhesión</td>
</tr>
<tr>
<td>2.2</td>
<td>Mecanismos de endocitosis</td>
</tr>
<tr>
<td>2.3</td>
<td>Mecanismos de muerte intracelular</td>
</tr>
<tr>
<td>2.4</td>
<td>Poblaciones celulares fagocíticas</td>
</tr>
<tr>
<td>3</td>
<td>Regulación del Sistema del Complemento</td>
</tr>
<tr>
<td>3.1</td>
<td>Vía Clásica y Vía Alterna</td>
</tr>
<tr>
<td>3.2</td>
<td>Vía de la MBL</td>
</tr>
<tr>
<td>3.3</td>
<td>Proteínas reguladoras solubles</td>
</tr>
<tr>
<td>3.4</td>
<td>Proteínas reguladoras en membrana</td>
</tr>
<tr>
<td>3.5</td>
<td>Receptores</td>
</tr>
<tr>
<td>4</td>
<td>Inflamación</td>
</tr>
<tr>
<td>4.1</td>
<td>Poblaciones celulares que participan en la inflamación</td>
</tr>
<tr>
<td>4.2</td>
<td>Mecanismos de atracción de leucocitos en el sitio de la inflamación</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Quimiotácticos endógenos</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Quimiotácticos exógenos (productos bacterianos).</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Citocinas proinflamatorias</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Familias de moléculas de adhesión y sus ligandos</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>5</td>
<td>Receptores para antígeno</td>
</tr>
<tr>
<td></td>
<td>5.1 Estructura de Inmunoglobulinas y Receptor de linfocito T</td>
</tr>
<tr>
<td></td>
<td>5.2 Mecanismos de diversidad del repertorio de Inmunoglobulinas y Receptor de linfocito T</td>
</tr>
<tr>
<td></td>
<td>5.3 Anticuerpos monoclonales</td>
</tr>
<tr>
<td>6</td>
<td>Complejo Principal de Histocompatibilidad</td>
</tr>
<tr>
<td></td>
<td>6.1 Organización génica</td>
</tr>
<tr>
<td></td>
<td>6.2 Estructura de las moléculas Clase I y Clase II</td>
</tr>
<tr>
<td></td>
<td>6.3 Moléculas de la región III</td>
</tr>
<tr>
<td></td>
<td>6.4 Vías de procesamiento y presentación de antígeno</td>
</tr>
<tr>
<td>7</td>
<td>Moléculas de la familia CD1</td>
</tr>
<tr>
<td></td>
<td>7.1 Antígenos (lipídicos y péptidos hidrofóbicos)</td>
</tr>
<tr>
<td></td>
<td>7.2 Procesamiento de antígeno</td>
</tr>
<tr>
<td></td>
<td>7.3 Otras vías de procesamiento de antígeno</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
- Exposición oral
- Exposición audiovisual
- Ejercicios dentro del aula
- Examen escrito
- Seminarios
- Lecturas obligatorias
- Trabajos de investigación
- Prácticas de taller o laboratorio
- Prácticas de campo
- Otros:

Mecanismos de evaluación de aprendizaje de los alumnos:
- Exámenes Parciales
- Examen final escrito
- Trabajos y tareas fuera del aula
- Exposición de seminarios por los alumnos
- Participación en clase
- Asistencia
- Seminario
- Otras:

Perfil profesioralístico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en inmunología avanzada, así como tener experiencia docente.
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
</table>
| 1 | Introducción a la proteómica
1.1 Definición de Proteómica
1.2 Tipos de proteómica
1.3 Dinámica de la proteómica
1.4 Importancia
1.5 Diagrama de flujo general de los estudios proteómicos
1.6 Aplicaciones |
| 2 | Revisión de proteínas
2.1 Aminoácidos
2.2 Estructura primaria, secundaria, terciaria y cuaternaria
2.3 Modificaciones post-traduccionales |
| 3 | Obtención y preparación de muestras
3.1 Estrategias generales de extracción de proteínas (tejidos, células, fluidos) |
| 4 | 2D-GE Fundamentos del IEF y SDS-PAGE
4.1 Problemas frecuentes en la resolución de geles y soluciones |
| 5 | Métodos de detección
5.1 Tipos de métodos de detección. Límites de detección y sensibilidad
5.2 Ventajas y desventajas |
| 6 | Análisis in silico |

Denominación: PROTEOMICA
Clave:
Semestre(s): 1
Campos de Conocimiento: Biología Experimental, Biomedicina
No. Créditos: 8

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Teórico-Práctica</th>
<th>Horas</th>
<th>Horas por semana</th>
<th>Horas al Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teoría</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Práctica</td>
<td>2</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

Objetivo general:
El objetivo del curso es obtener el conocimiento básico en las técnicas empleadas en la proteómica y entender cómo han sido utilizadas para contestar preguntas básicas en la investigación.
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Revisión de los programas computacionales disponibles (Melanie, PD-Quest, Progenesis)</td>
</tr>
<tr>
<td>6.2</td>
<td>Aplicaciones</td>
</tr>
<tr>
<td>7</td>
<td>Otras técnicas en proteómica</td>
</tr>
<tr>
<td>7.1</td>
<td>MudPit, Shotgun proteomics, Cromatografía de líquidos, Orbitrap</td>
</tr>
<tr>
<td>7.2</td>
<td>Microarreglos de proteínas.</td>
</tr>
<tr>
<td>8</td>
<td>Expresión diferencial de proteínas</td>
</tr>
<tr>
<td>8.1</td>
<td>DIGE, ICAT, SILAC, iTRAQ, 15 N</td>
</tr>
<tr>
<td>9</td>
<td>Espectrometría de Masas</td>
</tr>
<tr>
<td>9.1</td>
<td>Fundamentos, métodos de ionización, analizadores de masas, LC-MS/MS</td>
</tr>
<tr>
<td>10</td>
<td>Bioinformática</td>
</tr>
<tr>
<td>10.1</td>
<td>Revisión de las bases de datos y algoritmos disponibles</td>
</tr>
<tr>
<td>11</td>
<td>Sesión práctica I</td>
</tr>
<tr>
<td>11.1</td>
<td>Extracción de proteínas de muestras problema</td>
</tr>
<tr>
<td>12</td>
<td>Sesión práctica II</td>
</tr>
<tr>
<td>12.1</td>
<td>Preparación de la muestra y Rehidratación para IEF</td>
</tr>
<tr>
<td>13</td>
<td>Sesión práctica III</td>
</tr>
<tr>
<td>13.1</td>
<td>Isoeleetrofoque</td>
</tr>
<tr>
<td>14</td>
<td>Sesión práctica IV</td>
</tr>
<tr>
<td>14.1</td>
<td>SDS-PAGE</td>
</tr>
<tr>
<td>15</td>
<td>Sesión práctica V</td>
</tr>
<tr>
<td>15.1</td>
<td>Revelado y análisis in silico</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Expresión oral</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición audiovisual</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminarios</td>
<td>()</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>()</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>()</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

Exámenes Parciales	(X)
Examen final escrito	(X)
Trabajos y tareas fuera del aula	()
Exposición de seminarios por los alumnos	()
Participación en clase	(X)
Asistencia	(X)
Seminario	()
Otras:	

Perfil profesiográfico:

El profesor o profesoras deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en proteómica, así como tener experiencia docente.
DENOMINACIÓN: RESPUESTA INMUNE Y CÁNCER

Clave: Optativo de elección

Horas: Teoría: 4, Práctica: 0

Horas por semana: 4

Horas al Semestre: 64

Tipo: Teórica

Modalidad: Curso

Duración del programa: Semestral

Seriación: Sin Seriación (X) Obligatoria () Indicativa ()

Objetivo general:
Que el alumno conozca la participación de las células inmunes en el reconocimiento y eliminación de las células tumorales así como en el desarrollo y progresión del tumor clínicamente detectable.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas Teóricas</th>
<th>Prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aspectos generales del Cáncer</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Teoría de la Inmunovigilancia y del nuevo concepto de Inmunoedición</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Suma total de horas:</td>
<td>64</td>
<td>0</td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aspectos generales del Cáncer</td>
</tr>
<tr>
<td>1.1</td>
<td>Panorama general de la Resposta Inmune (3 sesiones)</td>
</tr>
<tr>
<td>1.2</td>
<td>Evidencia e importancia de la participación del sistema inmune en el cáncer (Modelos Animales) (3 sesiones) (Primer examen parcial)</td>
</tr>
<tr>
<td>1.3</td>
<td>Conclusions y discusión del curso, evaluación del mismo (1 sesión)</td>
</tr>
<tr>
<td>2</td>
<td>Teoría de la Inmunovigilancia y del nuevo concepto de Inmunoedición</td>
</tr>
<tr>
<td>2.1</td>
<td>Mecanismos de inmuno-escape tumoral (4 sesiones)</td>
</tr>
<tr>
<td>2.2</td>
<td>Experiencia de cátedra (1 sesión)</td>
</tr>
<tr>
<td>2.3</td>
<td>Inmunoterapia: Aspectos históricos (1 sesión) y nuevas propuestas de terapia (2 sesiones) (Segundo examen parcial)</td>
</tr>
<tr>
<td>2.4</td>
<td>Conclusions y discusión del curso, evaluación del mismo (1 sesión)</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
- Exposición oral (X)
- Exposición audiovisual (X)
- Ejercicios dentro de clase ()
- Ejercicios fuera del aula ()
- Seminarios (X)
- Lecturas obligatorias ()
- Trabajo de Investigación ()
- Prácticas de taller o laboratorio ()
- Prácticas de campo ()
- Otros:

Mecanismos de evaluación de aprendizaje de los alumnos:
- Exámenes Parciales (X)
- Examen final escrito (X)
- Trabajos y tareas fuera del aula (X)
- Exposición de seminarios por los alumnos ()
- Participación en clase (X)
- Asistencia (X)
- Seminario ()
- Otras:

Perfil profesográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en inmunología y cáncer, así como tener experiencia docente.
Óbjetivo general:
El presente curso tiene como objetivo presentar a la vacunología como una nueva disciplina en la cual los estudiantes aprendan a integrar los conocimientos de inmunología, vacunas y enfermedad y así apreciar este nuevo enfoque. Se estudiará de manera general algunas enfermedades causadas por virus, bacterias y parásitos en las cuales se utilizan vacunas para prevenir las y para tratarlas como es el caso de la rabia mediante un esquema de vacunación post-exposición.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Teóricas</th>
<th>Prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vacunología una disciplina integral</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Fundamentos inmunológicos de las vacunas</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Enfermedades en el mundo</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Evaluación final</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>64</td>
<td>0</td>
</tr>
</tbody>
</table>

| | Suma total de horas: | 64 | |

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
</table>

1. **Vacunología una disciplina integral**
 1.1 Historia de la vacunación
 1.2 Que es una vacuna
 1.3 Cómo y porqué se hacen las vacunas
 1.4 Fases del desarrollo de las vacunas
 1.4.1 Preclínico- producción, seguridad animal e inmunogenicidad
 1.4.2 Fase 1- seguridad e inmunogenicidad (10-100)
 1.4.3 Fase 2- dosis, horario, seguridad e inmunogenicidad (100-1000)
 1.4.4 Fase 3- eficacia y seguridad (10,000 – 70,000)
 1.4.5 Fase 4- seguridad (100,000 – 1,000,000)
 1.5 Tipo de vacunas:
 1.5.1 vacunas atenuadas
 1.5.2 vacunas inactivadas
 1.5.3 vacunas recombinantes:
 - DNA- plásmidos
 - Subunitarias
 - Vectores bacterianos
 - Vectores virales
 - Adyuvantes:
 a) Què son los adyuvantes
 b) Tipo de adyuvantes
 c) Adyuvantes para mucosas
 1.6 La industria de las vacunas (Fabricantes de vacunas en el mundo)

2. **Fundamentos inmunológicos de las vacunas**
 2.1 La respuesta inmune
 2.2 Naturaleza del sistema inmune de los mamíferos
 2.3 Sistema inmune adaptativo
 2.4 Memoria inmunológica
 2.5 Inmunología vacunal
 2.6 Requerimientos para una vacunación exitosa
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
</table>
| 3 | Enfermedades en el mundo
3.1 Una mirada hacia las enfermedades en el mundo
3.1.1 Enfermedades transmitidas por la ruta respiratoria
3.1.2 Enfermedades transmitidas por la ruta fecal – oral
3.1.3 Enfermedades transmitidas por la ruta genital
3.1.4 Enfermedades transmitidas por vectores
3.1.5 Enfermedades zoonóticas: rabia
3.2 Enfermedades de mayor importancia en el mundo, epidemiología, fisiopatología y desarrollo de vacunas
3.2.1 VIH/SIDA: epidemiología y fisiopatología de la infección
3.2.2 VIH: progreso y obstáculos en el desarrollo de vacunas contra el SIDA
3.2.3 Malaria: epidemiología y fisiopatología de la infección
3.2.4 Malaria: progreso y obstáculos en el desarrollo de vacunas contra malaria
3.2.5 Tuberculosis: epidemiología y fisiopatología de la infección
3.2.6 Tuberculosis: actualizaciones sobre la vacuna BCG y el desarrollo de vacuna contra Tb de segunda generación
3.2.7 HPV: epidemiología y fisiopatología de la infección
3.2.8 Influenza.
3.2.9 Pandemia H5N1
3.2.10 Vacunas contra enfermedades emergentes
3.2.11 Neumococo/Haemophilus influenza b (Hib)
3.2.12 Infecciones meningococicas
3.2.13 Cólera, ETEC, Shigella, Tifoidea: fisiología comparativa
3.2.14 Enfermedades transmitidas por vectores: Dengue, Fiebre amarilla V17D
3.2.15 Rabia: epidemiología y fisiopatología de la infección, desarrollo de vacunas contra rabia
3.2.16 Pandemia Swine Flu H1N1 |
| 4 | Evaluación final
4.1 Examen final, entrega de trabajos finales
4.2 Presentación de las exposiciones, de acuerdo con los alumnos |

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Explicación oral</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición audiovisual</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>()</td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X)</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>()</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

<table>
<thead>
<tr>
<th>Exámenes Parciales</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examen final escrito</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
<td>()</td>
</tr>
<tr>
<td>Participación en clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Asistencia</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminario</td>
<td>(X)</td>
</tr>
<tr>
<td>Otras:</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en vacunología, así como tener experiencia docente.
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td>1.1</td>
<td>Estrategia para abordar los aspectos evolutivos del metabolismo y la expresión génica.</td>
</tr>
<tr>
<td>2</td>
<td>Regulación Metabólica</td>
</tr>
<tr>
<td>2.1</td>
<td>Regulación metabólica y control genético: dos partes de un mismo proceso</td>
</tr>
<tr>
<td>3</td>
<td>Sensores y Transducción de señales</td>
</tr>
<tr>
<td>4</td>
<td>Señalización y transcripción</td>
</tr>
<tr>
<td>5</td>
<td>Regulación epigenética</td>
</tr>
<tr>
<td>5.1</td>
<td>miRNAs</td>
</tr>
<tr>
<td>5.2</td>
<td>Cromatina e histonas</td>
</tr>
<tr>
<td>6</td>
<td>Efectos sobre el Metabolismo</td>
</tr>
<tr>
<td>6.1</td>
<td>Nutrientes</td>
</tr>
<tr>
<td>6.2</td>
<td>Diabetes y síndrome metabólico</td>
</tr>
<tr>
<td>6.3</td>
<td>Cáncer</td>
</tr>
<tr>
<td>7</td>
<td>Sistemas Complexos</td>
</tr>
<tr>
<td>8</td>
<td>Simposio de Fin de Curso</td>
</tr>
</tbody>
</table>

Bibliografía Básica:
Bibliografía Complementaria:

Bibliografía Complementaria:

http://www.nature.com/msb/journal/v2/n1/full/msb4100080.html
http://tbiomed.com/content/3/1/13

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Exposición oral</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición audiovisual</td>
<td>(x)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(x)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>()</td>
</tr>
<tr>
<td>Seminarios</td>
<td>()</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>(x)</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>(x)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>()</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

<table>
<thead>
<tr>
<th>Exámenes Parciales</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examen final escrito</td>
<td>()</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
<td>(x)</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
<td>(x)</td>
</tr>
<tr>
<td>Participación en clase</td>
<td>(x)</td>
</tr>
<tr>
<td>Asistencia</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminario</td>
<td>()</td>
</tr>
<tr>
<td>Otras: Ensayo (2)</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesoras deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en genética, regulación metabólica y aspectos evolutivos, así como tener experiencia docente.
Campo de Conocimiento: Ecología
Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Teóricas</td>
</tr>
<tr>
<td>1</td>
<td>Introducción</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Captura y uso de recursos</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>Crecimiento y desarrollo</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Interacciones bióticas</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Escalando al estudio de comunidades, ecosistemas y procesos globales</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Instrumentación y métodos</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Suma total de horas:</td>
<td>64</td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td>1.1</td>
<td>Ecofisiología y la distribución de los organismos</td>
</tr>
<tr>
<td>1.2</td>
<td>Aproximaciones conceptuales y experimentales a la Ecofisiología vegetal</td>
</tr>
<tr>
<td>1.3</td>
<td>Nuevas direcciones en Ecofisiología</td>
</tr>
<tr>
<td>2</td>
<td>Captura y uso de recursos</td>
</tr>
<tr>
<td>2.1</td>
<td>Carbono</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Fotosíntesis</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Respuesta de la fotosíntesis a los factores ambientales</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Respuesta de la fotosíntesis al calentamiento global</td>
</tr>
<tr>
<td>2.2</td>
<td>Elementos minerales</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Adquisición y uso de nutrientes</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Ciclos de nutrientes en comunidades vegetales</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Respuestas a condiciones extremas del suelo (suelos calcáreos, salinidad, acidez, contaminantes)</td>
</tr>
<tr>
<td>2.3</td>
<td>Relaciones hídricas</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Relaciones hídricas de la planta</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Relaciones hídricas en comunidades de plantas</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Respuestas funcionales a la sequía</td>
</tr>
<tr>
<td>3</td>
<td>Crecimiento y desarrollo</td>
</tr>
<tr>
<td>3.1</td>
<td>Regulación del crecimiento y desarrollo</td>
</tr>
<tr>
<td>3.2</td>
<td>Etapas del desarrollo en el ciclo de vida de las plantas</td>
</tr>
<tr>
<td>3.3</td>
<td>Influencias ambientales en el crecimiento y desarrollo</td>
</tr>
<tr>
<td>3.4</td>
<td>Fenología: Indicadores de características climáticas y cambios ambientales</td>
</tr>
<tr>
<td>4</td>
<td>Interacciones bióticas</td>
</tr>
<tr>
<td>4.1</td>
<td>Asociaciones simbióticas (micorrizas, organismos fijadores de nitrógeno, endosimbiontes)</td>
</tr>
<tr>
<td>4.2</td>
<td>Otras asociaciones (patógenos, parásitos)</td>
</tr>
<tr>
<td>4.3</td>
<td>Interacciones planta-planta</td>
</tr>
<tr>
<td>5</td>
<td>Escalando al estudio de comunidades, ecosistemas y procesos globales</td>
</tr>
<tr>
<td>5.1</td>
<td>Análisis funcional de las comunidades (diversidad funcional, reglas de ensamblaje)</td>
</tr>
<tr>
<td>5.2</td>
<td>Procesos ecosistémicos y globales (ciclo del agua, ciclos de nutrientes, productividad)</td>
</tr>
<tr>
<td>5.3</td>
<td>De los atributos funcionales a las funciones y servicios ecosistémicos</td>
</tr>
<tr>
<td>6</td>
<td>Instrumentación y métodos</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>6.1 Métodos a escala local (mediciones microambientales, mediciones ecofisiológicas e interacciones)</td>
</tr>
<tr>
<td></td>
<td>6.2 Métodos a gran escala (fluxos de gases en el dosel, isótopos estables, percepción remota)</td>
</tr>
<tr>
<td></td>
<td>6.3 Relaciones climáticas y modelación de la vegetación</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
- Exposición oral (X)
- Exposición audiovisual (X)
- Ejercicios dentro de clase (X)
- Ejercicios fuera del aula (X)
- Seminarios (X)
- Lecturas obligatorias (X)
- Trabajo de Investigación (X)
- Prácticas de taller o laboratorio ()
- Prácticas de campo ()

Mecanismos de evaluación de aprendizaje de los alumnos:
- Exámenes Parciales (X)
- Examen final escrito ()
- Trabajos y tareas fuera del aula (X)
- Exposición de seminarios por los alumnos (X)
- Participación en clase (X)
- Asistencia ()
- Seminario (X)
- Otras:

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en ecofisiología vegetal, así como tener experiencia docente.
Denominación: ECOLOGÍA CONDUCTUAL
Clave:
Semestre(s): 1
Campo de Conocimiento:
Biología Evolutiva,
Ecología
No. Créditos: 8

<table>
<thead>
<tr>
<th>Carácter</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optativo de elección</td>
<td>Horas por semana</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Teórica</th>
<th>Práctica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teoría</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Práctica</td>
<td>0</td>
<td>64</td>
</tr>
</tbody>
</table>

Modalidad: Curso
Duración del programa: Semestral

Serilación:
- Sin Seriación (X)
- Obligatoria ()
- Indicativa ()

Objetivo general:
Conocer, analizar y criticar algunos de los principales conceptos, teorías y modelos de la Ecología Conductual; además, revisar, evaluar y criticar los métodos que se usan para hacer investigación.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
<td>Teóricas</td>
</tr>
<tr>
<td>2</td>
<td>Conceptos y definiciones de la ecología conductual</td>
<td>Teóricas</td>
</tr>
<tr>
<td>3</td>
<td>Mecanismos</td>
<td>Teóricas</td>
</tr>
<tr>
<td>4</td>
<td>Reproducción</td>
<td>Teóricas</td>
</tr>
<tr>
<td>5</td>
<td>Conflicto</td>
<td>Teóricas</td>
</tr>
<tr>
<td>6</td>
<td>Estrategias alternativas</td>
<td>Teóricas</td>
</tr>
<tr>
<td>7</td>
<td>Relaciones</td>
<td>Teóricas</td>
</tr>
<tr>
<td>8</td>
<td>Conservación</td>
<td>Teóricas</td>
</tr>
<tr>
<td>9</td>
<td>Ética en estudios con animales</td>
<td>Teóricas</td>
</tr>
</tbody>
</table>

Total de horas: 64
Suma total de horas: 64

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td></td>
<td>1.1 Función de la Conducta</td>
</tr>
<tr>
<td></td>
<td>1.2 Selección natural y adaptación</td>
</tr>
<tr>
<td></td>
<td>1.3 Desarrollo de la conducta</td>
</tr>
<tr>
<td></td>
<td>1.3.1 Instinto y conducta innata</td>
</tr>
<tr>
<td></td>
<td>1.3.2 Ontogenia de la conducta</td>
</tr>
<tr>
<td></td>
<td>1.3.3 Aprendizaje</td>
</tr>
<tr>
<td></td>
<td>1.3.4 Evolución del aprendizaje</td>
</tr>
</tbody>
</table>

2	Conceptos y definiciones de la ecología conductual
	2.1 Selección individual y de grupo
	2.2 Adecuación inclusiva, selección de parentesco y altruismo
	2.3 Estrategias evolutivamente estables

3	Mecanismos
4	Reproducción
	4.1 Selección de la pareja
	4.1.1 Selección sexual
	4.1.2 Competencia espermática
	4.1.3 Elección críptica por parte de las hembras
	4.1.4 Selección sexual y especiación
	4.2 Sistemas de apareamiento
	4.2.1 Monogamia, poligamia, poliandria, promiscuidad (Ensayo 1)
	4.3 Cuidado paterno e inversión paterna
Unidad | Tema y Subtemas
---|---
4.4 | Infanticidio y conflicto padre-hijo
4.4.1 | Causas e hipótesis
4.4.2 | Fraticidio
4.5 | Cooperación y familias
5 | Conflicto
6 | Estrategias alternativas
6.1 | Diferencias entre individuos en competencia por
6.1.1 | Parejas
6.1.2 | Alimento
6.1.3 | Sitios de anidación
7 | Relaciones
8 | Conservación
9 | Ética en estudios con animales
9.1 | Conciencia animal
9.2 | Derechos (Ensayo 2)

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
- Exposición oral (x)
- Exposición audiovisual (x)
- Ejercicios dentro de clase (x)
- Ejercicios fuera del aula (x)
- Seminarios (x)
- Lecturas obligatorias (x)
- Trabajo de Investigación ()
- Prácticas de taller o laboratorio ()
- Prácticas de campo ()
- Otros: ()

Mecanismos de evaluación de aprendizaje de los alumnos:
- Exámenes Parciales ()
- Examen final escrito ()
- Trabajos y tareas fuera del aula ()
- Participación en clase (X)
- Exposición de seminarios por los alumnos ()
- Asistencia (X)
- Seminario ()
- Otras: Ensayo (2)

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en ecología conductual, así como tener experiencia docente.
Denominación: ECOLOGÍA DE COMUNIDADES
Clave: Optativo de elección
Semestre(s): 1
Campo de Conocimiento: Ecología
No. Créditos: 8
Carácter: Optativo de elección
Tipo: Teórico-Práctica
Horas:
Horas por semana: 4
Horas al Semestre: 64
Modalidad: Curso
Duración del programa: Semestral

Seriación: Sin Seriación (X) Obligatoria () Indicativa ()

Objetivo general: Este curso pretende que los estudiantes del Posgrado en Ciencias Biológicas adquieran las herramientas teóricas y prácticas actuales para el estudio de la ecología de comunidades.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
</table>
| 1 | Introducción- Conceptos básicos
1.1 Definición y problemática de estudio
1.2 Perspectiva histórica de los conceptos de comunidades y ecosistemas
1.3. Importancia de los enfoques de comunidades y ecosistemas |
| 2 | Descripción de las comunidades
2.1. Diseño de muestreo y problemática
2.2. Escalas espaciales y temporales
2.3. Problemas específicos a estudios de vegetación y comunidades animales
2.4. Composición
2.5. Formas de crecimiento y de vida
2.6. Estructura espacial y temporal |
| 3 | Diversidad
3.1. Modelos de abundancia relativa y rareza
3.2. Diversidad Taxonómica
3.3 Diversidad Filogenético
3.4 Diversidad Funcional
3.5 Índices de diversidad alfa, beta y gamma |
| 4 | Sucesión
4.1 Factores promotores de la sucesión
4.2 Cambios en estructura y función a lo largo del tiempo |
| 5 | Origen y mantenimiento de la diversidad
5.1. Patrones y predictores de la diversidad
5.2. El concepto de nicho y competencia interespecífica
5.3. Otras interacciones bióticas
5.4. Modelos nulos
5.5. Patrones y procesos a distintas escalas espaciales y temporales
5.6 Reglas de ensamblaje |
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Comunidades y ecosistemas</td>
</tr>
<tr>
<td></td>
<td>6.1. biodiversidad y funcionamiento de los ecosistemas</td>
</tr>
<tr>
<td></td>
<td>6.2 Metacomunidades</td>
</tr>
<tr>
<td>7</td>
<td>Manejo</td>
</tr>
<tr>
<td></td>
<td>7.1. Manejo y conservación de comunidades</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
- Exposición oral (X)
- Exposición audiovisual (X)
- Ejercicios dentro de clase ()
- Ejercicios fuera del aula (X)
- Seminarios (X)
- Lecturas obligatorias (X)
- Trabajo de Investigación ()
- Prácticas de taller o laboratorio ()
- Prácticas de campo ()
- Otros: Desarrollo de proyecto final utilizando datos propios

Mecanismos de evaluación de aprendizaje de los alumnos:
- Exámenes Parciales (X)
- Examen final escrito (X)
- Trabajos y tareas fuera del aula (X)
- Exposición de seminarios por los alumnos (X)
- Participación en clase (X)
- Asistencia (X)
- Seminario (X)
- Otras: Trabajo Final

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en ecología de comunidades, así como tener experiencia docente.
Denominación: **ECOLOGÍA DE ECOSISTEMAS**
Clave: Optativo de elección
Semestre(s): 1
Campo de Conocimiento: Ecología
No. Créditos: 8

<table>
<thead>
<tr>
<th>No.</th>
<th>Carácter</th>
<th>Horas</th>
<th>Horas por semana</th>
<th>Horas al Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Teoría</td>
<td>4</td>
<td>4</td>
<td>64</td>
</tr>
</tbody>
</table>

Tipo: Teórica
Modalidad: Curso
Duración del programa: Semestral

Objetivo general:
Proveer las bases teóricas para que el alumno comprenda y profundice su conocimiento sobre los procesos ecosistémicos y para que conozca su importancia funcional en los sistemas ecológicos.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
<th>Teóricas</th>
<th>Prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Marco Conceptual</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Ciclo Hidrológico</td>
<td>16</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Biogeoquímica del Ecosistema</td>
<td>16</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Ciclo Energético</td>
<td>16</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Diferencias estructurales y funcionales entre ecosistemas particulares</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Diversidad y funcionamiento del ecosistema</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Integración</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Total de horas: 64
Suma total de horas: 64

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Marco Conceptual</td>
</tr>
<tr>
<td></td>
<td>1.1 Introducción al enfoque ecosistémico</td>
</tr>
<tr>
<td></td>
<td>1.2 Teoría de sistemas</td>
</tr>
<tr>
<td></td>
<td>1.3 Teoría de jerarquías y escalas</td>
</tr>
<tr>
<td>2</td>
<td>Ciclo Hidrológico</td>
</tr>
<tr>
<td></td>
<td>2.1 La cuenca hidrográfica</td>
</tr>
<tr>
<td></td>
<td>2.2 Humedad atmosférica y precipitación</td>
</tr>
<tr>
<td></td>
<td>2.3 Infiltración, percolación y agua en el suelo</td>
</tr>
<tr>
<td></td>
<td>2.4 Absorción, conducción y transpiración de agua en las plantas</td>
</tr>
<tr>
<td></td>
<td>2.5 Evapotranspiración</td>
</tr>
<tr>
<td></td>
<td>2.6 Infiltración profunda y escorrentía</td>
</tr>
<tr>
<td></td>
<td>2.7 El balance hídrico</td>
</tr>
<tr>
<td>3</td>
<td>Biogeoquímica del Ecosistema</td>
</tr>
<tr>
<td></td>
<td>3.1 Entrada de nutrientes: lluvia e intemperismo</td>
</tr>
<tr>
<td></td>
<td>3.2 Nutrientes en el suelo: biodisponibilidad, formas de nutrientes en el suelo y mecanismos de protección</td>
</tr>
<tr>
<td></td>
<td>3.3 Nutrientes en la vegetación: absorción, asociaciones simbióticas, movimiento de nutrientes en las plantas, eficiencia de uso</td>
</tr>
<tr>
<td></td>
<td>3.4 Balance de nutrientes</td>
</tr>
<tr>
<td></td>
<td>3.5 Conceptos básicos de estequiométria ecológica</td>
</tr>
<tr>
<td></td>
<td>3.6 Ciclos globales de C, N y P</td>
</tr>
<tr>
<td>4</td>
<td>Ciclo Energético</td>
</tr>
<tr>
<td></td>
<td>4.1 Radiación: radiación neta y radiación fotosintéticamente activa (PAR)</td>
</tr>
<tr>
<td></td>
<td>4.2 Fotosíntesis</td>
</tr>
<tr>
<td></td>
<td>4.3 Asignación de recursos en las plantas, el cociente raíz: tallo</td>
</tr>
<tr>
<td></td>
<td>4.4 Productividad Primaria: producción de hojarasca, raíces y acumulación de biomasa</td>
</tr>
<tr>
<td></td>
<td>4.5 Descomposición de materia orgánica</td>
</tr>
<tr>
<td></td>
<td>4.6 Productividad Secundaria y redes tróficas</td>
</tr>
<tr>
<td></td>
<td>4.7 Balance energético</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>5</td>
<td>Diferencias estructurales y funcionales entre ecosistemas particulares</td>
</tr>
<tr>
<td></td>
<td>5.1 Ecosistemas terrestres y acuáticos</td>
</tr>
<tr>
<td></td>
<td>5.2 Ecosistemas templados y tropicales</td>
</tr>
<tr>
<td></td>
<td>5.3 Ecosistemas secos y húmedos</td>
</tr>
<tr>
<td>6</td>
<td>Diversidad y funcionamiento del ecosistema</td>
</tr>
<tr>
<td></td>
<td>6.1 Modelos de diversidad-funcionamiento</td>
</tr>
<tr>
<td></td>
<td>6.2 Redundancia en los procesos funcionales</td>
</tr>
<tr>
<td></td>
<td>6.3 Significado de la biodiversidad en el funcionamiento del ecosistema</td>
</tr>
<tr>
<td>7</td>
<td>Integración</td>
</tr>
<tr>
<td></td>
<td>7.1 Implicaciones del enfoque ecosistémico en el manejo, conservación y restauración</td>
</tr>
<tr>
<td></td>
<td>7.2 Una aproximación funcional a la ecología global</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
- Exposición oral
 | (X) |
- Exposición audiovisual
 | (X) |
- Ejercicios dentro de clase
 | (X) |
- Ejercicios fuera del aula
 | (X) |
- Seminarios
 | (X) |
- Lecturas obligatorias
 | () |
- Trabajo de Investigación
 | (X) |
- Prácticas de taller o laboratorio
 | () |
- Prácticas de campo
 | () |
- Otros:
 | () |

Mecanismos de evaluación de aprendizaje de los alumnos:
- Exámenes Parciales
 | (X) |
- Examen final escrito
 | (X) |
- Trabajos y tareas fuera del aula
 | () |
- Exposición de seminarios por los alumnos
 | (X) |
- Participación en clase
 | () |
- Asistencia
 | () |
- Seminario
 | () |
- Otras:
 | () |

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en ecología de ecosistemas, así como tener experiencia docente.
Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
<th>Teóricas</th>
<th>Prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Crecimiento de una sola especie</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Poblaciones estructuradas</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Introducción a la evolución de historias de vida</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Interacciones entre poblaciones</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suma total de horas:</td>
<td>64</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td></td>
<td>1.1 Definición de ecología de poblaciones y su campo de estudio</td>
</tr>
<tr>
<td></td>
<td>1.2 El uso de modelos en ecología de poblaciones</td>
</tr>
<tr>
<td></td>
<td>1.3 Organismos unitarios y organismos modulares</td>
</tr>
<tr>
<td></td>
<td>1.4 Tasas vitales y parámetros demográficos</td>
</tr>
<tr>
<td></td>
<td>Crecimiento de una sola especie</td>
</tr>
<tr>
<td></td>
<td>2.1. Crecimiento ilimitado: modelos discreto y continuo</td>
</tr>
<tr>
<td></td>
<td>2.1.1. Definición del modelo de crecimiento continuo: supuestos y desarrollo</td>
</tr>
<tr>
<td></td>
<td>2.1.1.1. Tasas instantáneas de natalidad y mortalidad</td>
</tr>
<tr>
<td></td>
<td>2.1.1.2. Tasa de crecimiento poblacional (diferencial continua)</td>
</tr>
<tr>
<td></td>
<td>2.1.1.3. Parámetro Malthusiano (tasa intrínseca de crecimiento)</td>
</tr>
<tr>
<td></td>
<td>2.1.1.4. Proyección exponencial y tiempo de crecimiento</td>
</tr>
<tr>
<td></td>
<td>2.1.2. Definición del modelo de crecimiento discreto: supuestos y desarrollo</td>
</tr>
<tr>
<td></td>
<td>2.1.2.1. Tasas instantáneas de natalidad y mortalidad</td>
</tr>
<tr>
<td></td>
<td>2.1.2.4. Crecimiento discreto (en diferencia discreta)</td>
</tr>
<tr>
<td></td>
<td>2.1.2.3. Tasa finita de crecimiento poblacional</td>
</tr>
<tr>
<td></td>
<td>2.1.2.4. Crecimiento poblacional en varias generaciones</td>
</tr>
<tr>
<td></td>
<td>2.2 Crecimiento limitado</td>
</tr>
<tr>
<td></td>
<td>2.2.1. Densodependencia</td>
</tr>
<tr>
<td></td>
<td>2.2.2. Logística discreta: dinámicas</td>
</tr>
<tr>
<td></td>
<td>2.2.3 Logística discreta con retrasos</td>
</tr>
<tr>
<td></td>
<td>2.2.4. Logística continua</td>
</tr>
<tr>
<td></td>
<td>2.2.5. La ecuación logística y su relación con la teoría del caos determinístico</td>
</tr>
<tr>
<td></td>
<td>2.2.6 Conceptos básicos de genética de poblaciones</td>
</tr>
<tr>
<td></td>
<td>2.3 Introducción al concepto metapoblacional</td>
</tr>
<tr>
<td></td>
<td>2.3.1. El modelo de Levins</td>
</tr>
<tr>
<td></td>
<td>2.3.2. Dispersión entre poblaciones</td>
</tr>
<tr>
<td></td>
<td>2.3.3. Aplicaciones en la conservación</td>
</tr>
<tr>
<td>2</td>
<td>Poblaciones estructuradas</td>
</tr>
<tr>
<td></td>
<td>3.1 Tablas de vida</td>
</tr>
<tr>
<td></td>
<td>3.1.1 Ciclos de vida</td>
</tr>
<tr>
<td></td>
<td>3.1.2 Tipos de tablas de vida</td>
</tr>
<tr>
<td></td>
<td>3.1.3 Parámetros de la tabla de vida</td>
</tr>
</tbody>
</table>
Unidad | Tema y Subtemas
---|---
3.1.4 | Comportamiento asintótico de la estructura de edades. Ecuación de Euler-Lotka

4 | Introducción a la evolución de historias de vida
 - 4.1. Introducción y supuestos básicos
 - 4.2 Reproducción semelhante o iterópara
 - 4.3 Atributos de historia de vida
 - 4.4. Limitaciones a la variación en las historias de vida
 - 4.4.1. Trade-offs y el costo de la reproducción
 - 4.4.2. Efectos de linaje
 - 4.5. Clasificación de las historias de vida: el concepto de estrategia
 - 4.5.1. El modelo de r y K de Mc Arthur & Wilson
 - 4.5.2. Estrategias de historia de vida en plantas: El triángulo de Grime
 - 4.5.3. Bet-hedging
 - 4.5.4. Continuo rápido-lento
 - 4.5.5. Triángulo demográfico

5 | Interacciones entre poblaciones
 - 5.1. Interacción entre dos poblaciones: Tipos de interacción
 - 5.1.1. Competencia
 - 5.1.1.1. Competencia intraespecífica
 - 5.1.1.2. Competencia interespecífica
 - 5.1.2. Ecuaciones de Lotka-Volterra
 - 5.1.3 Dinámica de organismos y recursos
 - 5.1.4. Depredación
 - 5.1.5. Tipos de depredación
 - 5.1.6. Modelo de Lotka-Volterra
 - 5.1.7. Parasitismo
 - 5.1.8. Parasitoidismo
 - 5.1.8.1. Herbivoría
 - 5.2. Interacciones entre varias poblaciones: Tipos de interacción y problemas metodológicos
 - 5.2.1. Tres competidores
 - 5.2.2. Una planta, un herbívoro y un enemigo natural
 - 5.2.3. Dos mutualistas y un “aprovechado”

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
- Exposición oral (X)
- Exposición audiovisual (X)
- Ejercicios dentro de clase (X)
- Ejercicios fuera del aula (X)
- Seminarios (X)
- Lecturas obligatorias (X)
- Trabajo de Investigación (X)
- Prácticas de taller o laboratorio (X)
- Prácticas de campo ()
- Otros:

Mecanismos de evaluación de aprendizaje de los alumnos:
- Exámenes Parciales (X)
- Examen final escrito ()
- Trabajos y tareas fuera del aula (X)
- Exposición de seminarios por los alumnos (X)
- Participación en clase (X)
- Asistencia (X)
- Seminario (X)
- Otras: Ensayo

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en ecología de poblaciones, así como tener experiencia docente.
Denominación: ECOLOGÍA EVOLUTIVA
Clave:
Semestre(s): 1
Campo de Conocimiento: Ecología
No. Créditos: 8
Carácter: Optativo de elección
Tipo: Teórico-Práctica
DURACIÓN DEL PROGRAMA: Semestral

Objetivo general:
Analizar los fundamentos y las preguntas y metodologías más importantes y con mayor actualidad dentro de la Ecología Evolutiva, desarrollando conceptos y metodologías para diferentes grupos de organismos, de Bacterias y Archeas, a Plantas con Flores y Vertebrados.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas Teóricas</th>
<th>Horas Prácticas</th>
<th>Total de horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ecología Evolutiva</td>
<td>3</td>
<td>3</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>Selección</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Variación genética en el espacio</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Historias de vida</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Ecología evolutiva de las interacciones poblacionales</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>El rico ecológico y las comunidades</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Especie y especiación: un problema no resuelto</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>Reconstructión filogenética y relojes moleculares: avances recientes</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Las radiaciones adaptativas como un sistema modelo para estudiar a la Ecología Evolutiva</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

Total de horas: 32
Suma total de horas: 64

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ecología Evolutiva</td>
</tr>
<tr>
<td>1.1</td>
<td>La síntesis moderna: naturalistas, ecólogos y genetistas</td>
</tr>
<tr>
<td>1.2</td>
<td>Ecología de poblaciones: Gause, Elton, MacArthur, Lack y Wilson</td>
</tr>
<tr>
<td>1.3</td>
<td>El surgimiento de la Ecología Evolutiva como disciplina independiente</td>
</tr>
<tr>
<td>1.4</td>
<td>Los alcances y métodos de la Ecología Evolutiva</td>
</tr>
<tr>
<td>2</td>
<td>Selección</td>
</tr>
<tr>
<td>2.1</td>
<td>Aspectos ecológicos</td>
</tr>
<tr>
<td>2.2</td>
<td>Aspectos moleculares: teoría neutra y métodos para detectarla</td>
</tr>
<tr>
<td>2.3</td>
<td>Ligamiento, unidades de selección y selección periódica</td>
</tr>
<tr>
<td>3</td>
<td>Variación genética en el espacio</td>
</tr>
<tr>
<td>3.1</td>
<td>Introducción al problema</td>
</tr>
<tr>
<td>3.2</td>
<td>Modelos espaciales</td>
</tr>
<tr>
<td>3.3</td>
<td>Modelos para poblaciones divididas</td>
</tr>
<tr>
<td>3.4</td>
<td>El Nested clade analysis y la coalescencia</td>
</tr>
<tr>
<td>4</td>
<td>Historias de vida</td>
</tr>
<tr>
<td>4.1</td>
<td>Repaso de demografía básica</td>
</tr>
<tr>
<td>4.2</td>
<td>Edad a la madurez, tamaño y número de la progenie</td>
</tr>
<tr>
<td>4.3</td>
<td>Compromisos (“trade-off”)</td>
</tr>
<tr>
<td>4.4</td>
<td>Ciclo de vida, senescencia. Iteróparos contra semélparos</td>
</tr>
<tr>
<td>5</td>
<td>Ecología evolutiva de las interacciones poblacionales</td>
</tr>
<tr>
<td>5.1</td>
<td>Evolución de mutualismos y “cheaters”</td>
</tr>
<tr>
<td>5.2</td>
<td>Ecología evolutiva de la competencia</td>
</tr>
<tr>
<td>5.3</td>
<td>Ecología evolutiva de las interacciones predador-presa</td>
</tr>
<tr>
<td>5.4</td>
<td>Evolución de las enfermedades y patogenicidad</td>
</tr>
</tbody>
</table>
Unidad | Tema y Subtemas
--- | ---
5.5 | Coevolución y coespeciación
6 | El nicho ecológico y las comunidades
6.1 | Enfoques clásicos
6.2 | La teoría neutra de las comunidades
6.3 | Ensamblaje de comunidades
6.4 | Enfoques modernos experimentales
6.5 | Enfoques indirectos y estadísticos
6.6 | Metacomunidades
7 | Especie y especiación: un problema no resuelto
7.1 | Discusión sobre la utilidad y la realidad de los conceptos de especie
7.2 | Perspectivas contemporáneas desde el punto de vista genético
7.3 | El punto de vista ecológico
8 | Reconstrucción filogenética y relojes moleculares: avances recientes
8.1 | Los métodos “clásicos” de distancia y parsimonia: principios y limitaciones
8.2 | Métodos basados en el “Likelihood” y métodos bayesianos
8.3 | Bootstrap, jackknife y otros método para evaluar a los árboles
8.4 | Avances reciente en el estudio de las tasas de evolución y los relojes moleculares
8.5 | Algunos avances importantes en la reconstrucción del árbol de la vida
8.6 | Sobre los métodos comparativos y avances recientes
8.7 | Sobre el problema de la reconstrucción de caracteres y adaptaciones
9 | Las radiaciones adaptativas como un sistema modelo para estudiar a la Ecología Evolutiva
9.1 | Ideas clásicas
9.2 | La síntesis de Schluter
9.3 | El uso de los marcadores moleculares y métodos estadísticos
9.4 | Ejemplo de estudios recientes

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
Exposición oral (X) Examen final escrito (X)
Exposición audiovisual (X) Trabajos y tareas fuera del aula (X)
Ejercicios dentro de clase (X) Exposición de seminarios por los alumnos (X)
Ejercicios fuera del aula (X) Participación en clase (X)
Seminarios (X) Asistencia (X)
Lecturas obligatorias (X) Seminario (X)
Trabajo de Investigación (X) Otras: ENSAYO FINAL
Prácticas de taller o laboratorio (X) Prácticas de campo (X)
Otros:

Mecanismos de evaluación de aprendizaje de los alumnos:
Exámenes Parciales (X)
Examen final escrito (X)
Trabajos y tareas fuera del aula (X)
Exposición de seminarios por los alumnos (X)
Participación en clase (X)
Asistencia (X)
Seminario (X)

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en ecología evolutiva, así como tener experiencia docente.
Denominación: **ESTADÍSTICA EN ECOLOGÍA**

Clave: Semestre(s): 1

Campo de Conocimiento: Biología Evolutiva, Ecología, Manejo Integral de Ecosistemas

No. Créditos: 8

Carácter: Optativo de elección

<table>
<thead>
<tr>
<th>Horas</th>
<th>Horas por semana</th>
<th>Horas al Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teoría: 2</td>
<td>Práctica: 2</td>
<td>4</td>
</tr>
</tbody>
</table>

Tipo: Teórico-Práctica

Modalidad: Curso Duración del programa: Semestral

Seriación: Sin Seriación (X) Obligatoria () Indicativa ()

Objetivo general:

Ofrecer las nociones de estadística necesarias para que el alumno sea capaz de: (1) comprender los análisis estadísticos presentados en artículos científicos, (2) plantear preguntas ecológicas relevantes en términos estadísticos, (3) elaborar diseños de muestreo y de experimentación en el área de la ecología, (4) enfrentarse a situaciones reales que requieren el uso de herramientas estadísticas.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción: La idea de una prueba estadística
1.1 Variabilidad en poblaciones naturales
1.2 Idea de una prueba estadística
1.3 Necesidad de la estadística en biología
1.4 Hipótesis nulas
1.5 La importancia del diseño de muestreo y experimental</td>
</tr>
<tr>
<td>2</td>
<td>Herramientas
2.1 Álgebra de matrices y vectores
2.2 Hojas de cálculo: ventajas y limitaciones
2.3 Paquetes de software: “R” y “Mathematica”
2.4 Elementos de programación en Visual Basic y en “R”
2.5 Modelos estadísticos y dinámicos</td>
</tr>
<tr>
<td>3</td>
<td>Probabilidad
3.1 Definiciones de probabilidad
3.2 El espacio muestral, teoría de conjuntos
3.3 La teoría matemática de la probabilidad
3.4 El teorema de Bayes y la probabilidad condicional</td>
</tr>
</tbody>
</table>

Contenido Temático

- **Unidad 1**: Introducción: La idea de una prueba estadística
 1.1 Variabilidad en poblaciones naturales
 1.2 Idea de una prueba estadística
 1.3 Necesidad de la estadística en biología
 1.4 Hipótesis nulas
 1.5 La importancia del diseño de muestreo y experimental

- **Unidad 2**: Herramientas
 2.1 Álgebra de matrices y vectores
 2.2 Hojas de cálculo: ventajas y limitaciones
 2.3 Paquetes de software: “R” y “Mathematica”
 2.4 Elementos de programación en Visual Basic y en “R”
 2.5 Modelos estadísticos y dinámicos

- **Unidad 3**: Probabilidad
 3.1 Definiciones de probabilidad
 3.2 El espacio muestral, teoría de conjuntos
 3.3 La teoría matemática de la probabilidad
 3.4 El teorema de Bayes y la probabilidad condicional
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
</table>
| 4 | Distribuciones estadísticas
| | 4.1 Variables aleatorias
| | 4.2 Poblaciones y muestras
| | 4.3 Distribuciones discretas y continuas
| | 4.4 Medidas de tendencia central y de variación
| | 4.5 El teorema del límite central |
| 5 | Muestreo
| | 5.1 Variabilidad biológica en el espacio y el tiempo
| | 5.2 Teoría general del muestreo
| | 5.3 Diseños de muestreo en ecología
| | 5.4 Herramientas de inferencia |
| 6 | Pruebas de hipótesis
| | 6.1 El método científico y el diseño de experimentos
| | 6.2 El planteamiento de hipótesis
| | 6.3 Significancia estadística y significancia biológica
| | 6.4 Pruebas paramétricas, no paramétricas
| | 6.5 Métodos Monte Carlo
| | 6.6 Estadística bayesiana |
| 7 | El análisis de varianza (ANOVA)
| | 7.1 Propiedades de la distribución normal
| | 7.2 Partición de la varianza en pruebas de hipótesis
| | 7.3 Diseños experimentales usando ANOVA
| | 7.4 Pruebas de hipótesis |
| 8 | Regresión y correlaciones lineales
| | 8.1 Modelos lineales
| | 8.2 Ajuste por mínimos cuadrados
| | 8.3 Pruebas de hipótesis
| | 8.4 Regresión no lineal y métodos alternativos
| | 8.5 Modelos lineales generalizados (GLMs) |
| 9 | Análisis de datos categóricos
| | 9.1 Tablas de contingencia de 2x2
| | 9.2 La distribución
| | 9.3 Tablas de contingencia: teoría general
| | 9.4 Pruebas de bondad de ajuste |
| 10 | Pruebas no paramétricas
| | 10.1 Pruebas de hipótesis no paramétricas
| | 10.2 Correlación no paramétrica
| | 10.3 El problema de las muestras pequeñas |
| 11 | Estadística multivariada
| | 11.1 Métodos de exploración de tendencias
| | 11.2 Ordenación y clasificación
| | 11.3 La distribución normal multivariada
| | 11.4 Análisis de varianza multivariado (MANOVA)
| | 11.5 Regresión y correlación múltiples |
| 12 | Temas especiales de ecología estadística
| | 12.1 Pseudorrepetición: teoría y práctica
| | 12.2 Modelos nulos
| | 12.3 Aloometría y análisis de escalas
| | 12.4 Inferencia bayesiana
| | 12.5 Meta-análisis |

Bibliografía Básica:

Bibliografía Complementaria:

<table>
<thead>
<tr>
<th>Sugerencias didácticas:</th>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral</td>
<td>Exámenes Parciales</td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td>Examen final escrito</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>Trabajos y tareas fuera del aula</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>Exposición de seminarios por los alumnos</td>
</tr>
<tr>
<td>Seminarios</td>
<td>Participación en clase</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>Asistencia</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>Seminario</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>Otras:</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td></td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en estadística, así como tener experiencia docente.
Denominación: FUNDAMENTOS DE ECOLOGÍA

Clave: Semestre(s): 1
Campo de Conocimiento: Ecología, Manejo Integral de Ecosistemas
No. Créditos: 8

Carácter: Optativo de elección
Tipo: Teórico-Práctica
Modalidad: Curso
Duración del programa: Semestral

Objetivo general: Este curso pretende brindar a los estudiantes del Posgrado en Ciencias Biológicas las bases teóricas en el estudio de la ecología, así como estimular y desarrollar su comprensión de los aspectos más relevantes de esta área del conocimiento.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td>1.1</td>
<td>Definiciones y Aproximaciones</td>
</tr>
<tr>
<td>1.2</td>
<td>Niveles de Organización</td>
</tr>
<tr>
<td>1.3</td>
<td>Divisiones de Ecología</td>
</tr>
<tr>
<td>2</td>
<td>Factores Bióticos y Abióticos</td>
</tr>
<tr>
<td>2.1</td>
<td>Condiciones y Recursos</td>
</tr>
<tr>
<td>2.2</td>
<td>Efectos de los factores ecológicos sobre los organismos</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Distribución de los organismos</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Ecofisiología</td>
</tr>
<tr>
<td>3</td>
<td>Poblaciones</td>
</tr>
<tr>
<td>3.1</td>
<td>Definición de población</td>
</tr>
<tr>
<td>3.2</td>
<td>Características de las poblaciones</td>
</tr>
<tr>
<td>3.3</td>
<td>Introducción a la teoría demográfica</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Patrones a nivel demográfico: tamaño de la población, proporción de sexos, proporción de individuos de diferente talla o estado de desarrollo</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Procesos a nivel demográfico: nacimientos, muertes, migración, transiciones entre estados de desarrollo o categorías de tamaño</td>
</tr>
<tr>
<td>3.4</td>
<td>Genética de poblaciones</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Patrones de genética de poblaciones: Estructura genética de una población, diversidad genética y formas de medirla</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Procesos de genética de poblaciones: Sistemas de apareamiento, dispersión en el espacio y en el tiempo, identificar cómo las prácticas de manejo pueden interferir con estos procesos</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>4</td>
<td>Historias de vida y estrategias de historias de vida</td>
</tr>
<tr>
<td></td>
<td>4.1 Conceptos básicos</td>
</tr>
<tr>
<td></td>
<td>4.2 Estrategias de historias de vida</td>
</tr>
<tr>
<td></td>
<td>4.3 Parámetros de historias de vida</td>
</tr>
<tr>
<td></td>
<td>4.4 Tipos de historias de vida</td>
</tr>
<tr>
<td></td>
<td>4.5 El principio de asignación de la energía: Compromisos (Trade-offs)</td>
</tr>
<tr>
<td>5</td>
<td>Interacciones Bióticas</td>
</tr>
<tr>
<td></td>
<td>5.1 Clasificación de las interacciones</td>
</tr>
<tr>
<td></td>
<td>5.2 Competencia</td>
</tr>
<tr>
<td></td>
<td>5.2.1 Competencia intraespecífica</td>
</tr>
<tr>
<td></td>
<td>5.2.1.1 Modelos</td>
</tr>
<tr>
<td></td>
<td>5.2.2 Competencia interespecífica</td>
</tr>
<tr>
<td></td>
<td>5.2.2.1 Modelos</td>
</tr>
<tr>
<td></td>
<td>5.2.2.2 Exclusión competitiva y evasión de la competencia</td>
</tr>
<tr>
<td></td>
<td>5.2.2.3 Teoría del Nicho</td>
</tr>
<tr>
<td></td>
<td>5.3 Depredación</td>
</tr>
<tr>
<td></td>
<td>5.3.1 Tipos de depredación</td>
</tr>
<tr>
<td></td>
<td>5.3.2 Depredadores verdaderos</td>
</tr>
<tr>
<td></td>
<td>5.3.3 Herbivoría</td>
</tr>
<tr>
<td></td>
<td>5.3.4 Parasitismo y parasitoidismo</td>
</tr>
<tr>
<td></td>
<td>5.4 Mutualismo</td>
</tr>
<tr>
<td></td>
<td>5.4.1 Protocoperación</td>
</tr>
<tr>
<td></td>
<td>5.4.2 Endofitismo</td>
</tr>
<tr>
<td></td>
<td>5.4.3 Simbiosis</td>
</tr>
<tr>
<td>6</td>
<td>Comunidades</td>
</tr>
<tr>
<td></td>
<td>6.1 Definición</td>
</tr>
<tr>
<td></td>
<td>6.2 Propiedades de las comunidades</td>
</tr>
<tr>
<td></td>
<td>6.3 Clasificación de las comunidades</td>
</tr>
<tr>
<td></td>
<td>6.4 Las comunidades en el tiempo</td>
</tr>
<tr>
<td></td>
<td>6.4.1 Fenología</td>
</tr>
<tr>
<td></td>
<td>6.4.2 Dinámica de comunidades, sucesión y dinámicas no lineales</td>
</tr>
<tr>
<td></td>
<td>6.5 Diversidad</td>
</tr>
<tr>
<td></td>
<td>6.5.1 Definición de diversidad biológica</td>
</tr>
<tr>
<td></td>
<td>6.5.2 Medición de la diversidad biológica</td>
</tr>
<tr>
<td></td>
<td>6.5.3 Especies clave</td>
</tr>
<tr>
<td></td>
<td>6.5.4 Recursos clave</td>
</tr>
<tr>
<td></td>
<td>6.5.5 Diversidad alfa y beta</td>
</tr>
<tr>
<td>7</td>
<td>Ecosistemas</td>
</tr>
<tr>
<td></td>
<td>7.1 Definición de ecosistemas: estructura y funcionamiento</td>
</tr>
<tr>
<td></td>
<td>7.2 Patrones a nivel ecosistema: Almacenes</td>
</tr>
<tr>
<td></td>
<td>7.3 Procesos a nivel ecosistema: flujos</td>
</tr>
<tr>
<td></td>
<td>7.3.1 Balance hídrico</td>
</tr>
<tr>
<td></td>
<td>7.3.2 Procesos Biogeoquímicos a escala de ecosistemas: entradas y salidas de los nutrientes del ecosistema; disponibilidad de nutrientes en el suelo; adquisición y utilización de nutrientes por las plantas; retorno de nutrientes al suelo</td>
</tr>
<tr>
<td></td>
<td>7.3.3 Energética: productividad primaria neta; productividad secundaria neta; redes tróficas: cadenas y factores que regulan su longitud; balance energético</td>
</tr>
<tr>
<td>8</td>
<td>Bases ecológicas a nivel global</td>
</tr>
<tr>
<td></td>
<td>8.1 Cambio global</td>
</tr>
<tr>
<td></td>
<td>8.2 Balance Global del Agua: patrones de distribución del agua a escala planetaria (en que sitios hay déficit de agua desde el punto de balance hídrico)</td>
</tr>
<tr>
<td></td>
<td>8.3 Ciclos Globales de C, N y P</td>
</tr>
<tr>
<td></td>
<td>8.4 Cambio Global: factores procesos y consecuencias</td>
</tr>
<tr>
<td></td>
<td>8.5 Migración de especies en respuesta al cambio climático</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
<table>
<thead>
<tr>
<th>Exposición oral</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición audiovisual</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X)</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>()</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:
Exámenes Parciales	(X)
Examen final escrito	(X)
Trabajos y tareas fuera del aula	(X)
Exposición de seminarios por los alumnos	(X)
Participación en clase	(X)
Asistencia	(X)
Seminario	(X)
Otras:	

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en ecología, así como tener experiencia docente.
Denominación: BIOLOGÍA DEL DESARROLLO EN PLANTAS
Clave: Semestre(s): 1
Campo de Conocimiento: Biología Evolutiva y Ecología
No. Créditos: 8

<table>
<thead>
<tr>
<th>Carácter: Optativo de elección</th>
<th>Horas</th>
<th>Horas por semana</th>
<th>Horas al Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo: Teórica</td>
<td>Teoría: 4</td>
<td>Práctica: 0</td>
<td>4</td>
</tr>
</tbody>
</table>

Modalidad: Curso
Duración del programa: Semestral

Seriación: Sin Seriación (X)
Obligatoria ()
Indicativa ()

Objetivo general: Conocer, analizar y criticar algunos de los principales conceptos, teorías y modelos de la Ecología Conductual; además, revisar, evaluar y criticar los métodos que se usan para hacer investigación.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
<th>Horas Teóricas</th>
<th>Horas Prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción a la célula vegetal</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
| 2 | Ciclo celular, replicación, regulación transcripcional y epigenética
2.1 Proliferación y diferenciación celular
2.2 Ciclo celular
2.3 Replicación del DNA
2.4 Genes de diferenciación celular de plantas
2.5 Regulación transcripcional. Mecanismos y proteínas que participan en este proceso
2.6 Regulación Epigenética. Estructura de la cromatina, modificaciones del DNA y las histonas. Complejos TrxG y PcG | 14 | 0 |
| 3 | Gametogénesis, desarrollo embrionario y germinación | 4 | 0 |
| 4 | Desarrollo de los órganos aéreos de la planta | 16 | 0 |
| 5 | Desarrollo de la raíz | 16 | 0 |
| 6 | Evolución y desarrollo, métodos formales para el análisis de redes | 12 | 0 |

Total de horas: 64
Suma total de horas: 64

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción a la célula vegetal</td>
</tr>
</tbody>
</table>
| 2 | Ciclo celular, replicación, regulación transcripcional y epigenética
2.1 Proliferación y diferenciación celular
2.2 Ciclo celular
2.3 Replicación del DNA
2.4 Genes de diferenciación celular de plantas
2.5 Regulación transcripcional. Mecanismos y proteínas que participan en este proceso
2.6 Regulación Epigenética. Estructura de la cromatina, modificaciones del DNA y las histonas. Complejos TrxG y PcG |
| 3 | Gametogénesis, desarrollo embrionario y germinación
3.1 Fecundación, desarrollo del embrión y germinación |
| 4 | Desarrollo de los órganos aéreos de la planta
4.1 Tipos celulares y genes que participan en su estructura
4.2 Fotomorfogénesis. Fotorreceptores y ciclo circadiano
4.3 Tiempo de Floración. Transición del edo. vegetativo al reproductivo
4.4 Especificación del meristemo floral y órganos florales
4.5 Desarrollo del meristemo floral, modelo ABC y organogénesis |
<p>| 5 | Desarrollo de la raíz |</p>
<table>
<thead>
<tr>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
<tr>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>5.1 Desarrollo, y estructura celular en el eje radial y longitudinal</td>
</tr>
<tr>
<td>5.2 Características de las células troncales de la raíz y su función.</td>
</tr>
<tr>
<td>5.3 Las hormonas y su participación en el desarrollo de la raíz. Importancia de las hormonas para el desarrollo de la raíz.</td>
</tr>
<tr>
<td>5.4 Regulación transcripcional en la raíz.</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>6.1 Evo-devo y enfoques teóricos: Panorama general</td>
</tr>
<tr>
<td>6.2 Métodos formales para el análisis de redes reguladoras. Retos de la biología integrativa</td>
</tr>
<tr>
<td>6.3 Impactos de la integración de transgenes en el metabolismo y desarrollo vegetal.</td>
</tr>
<tr>
<td>Bibliografía Básica:</td>
</tr>
<tr>
<td>Bibliografía Complementaria:</td>
</tr>
<tr>
<td>Herrero et al (2012) EARLY FLOWER4 Recruitment of EARLY FLOWERING3 in the Nucleus Sustains the Arabidopsis Circadian Clock 16p</td>
</tr>
<tr>
<td>Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN. Molecular analysis of SCARECROW function</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sugerencias didácticas:</th>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral (X)</td>
<td>Exámenes Parciales (X)</td>
</tr>
<tr>
<td>Exposición audiovisual (X)</td>
<td>Examen final escrito (X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase ()</td>
<td>Trabajos y tareas fuera del aula ()</td>
</tr>
<tr>
<td>Ejercicios fuera del aula ()</td>
<td>Exposición de seminarios por los alumnos ()</td>
</tr>
<tr>
<td>Seminarios (X)</td>
<td>Participación en clase (X)</td>
</tr>
<tr>
<td>Lecturas obligatorias (X)</td>
<td>Asistencia (X)</td>
</tr>
<tr>
<td>Trabajo de Investigación ()</td>
<td>Seminario ()</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio ()</td>
<td>Otras: Ensayo (2)</td>
</tr>
<tr>
<td>Prácticas de campo ()</td>
<td></td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biología del desarrollo en plantas, así como tener experiencia docente.
Campo de Conocimiento: Manejo Integral de Ecosistemas
Denominación: BASES CONCEPTUALES PARA EL MANEJO DE ECOSISTEMAS

Clave: Optativo de elección
Carácter: Teórica
Tipo: Teórico
Horas: Teoría: 4 Práctica: 0
Horas por semana: 4 Horas al Semestre: 64

Semestre(s): 1
Campo de Conocimiento: Manejo Integral de Ecosistemas
No. Créditos: 8

Objetivo general:
Brindar un panorama general sobre el estado actual de los problemas ambientales en el mundo y en México, así como los principales retos, necesidades y opciones para la construcción de soluciones.

Al término del curso el alumno será capaz de:

a) Presentar una revisión crítica de los principales conceptos relacionados con el estudio de los problemas ambientales y la construcción de soluciones.

b) Discutir los principales aspectos metodológicos y prácticos necesarios para abordar problemas ambientales, así como para el desarrollo de propuestas a distintas escalas.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Teóricas</td>
</tr>
<tr>
<td>1</td>
<td>Introducción a los problemas ambientales</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Los sistemas complejos</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>La interdisciplina</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>El abordaje socio-ecológico</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Trans-escalidad</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Sustentabilidad</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>Los enfoques participativos</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>Comunicación y educación ambientales</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Suma total de horas:</td>
<td>64</td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción a los problemas ambientales</td>
</tr>
<tr>
<td></td>
<td>1.1 Crisis ambiental: global, regional, local</td>
</tr>
<tr>
<td></td>
<td>1.2 Panorama General Mundial</td>
</tr>
<tr>
<td></td>
<td>1.3 Panorama en México</td>
</tr>
<tr>
<td>2</td>
<td>Los sistemas complejos</td>
</tr>
<tr>
<td></td>
<td>2.1 La teoría de los sistemas complejos: inicios y retos</td>
</tr>
<tr>
<td></td>
<td>2.2 Los problemas ambientales como sistemas complejos</td>
</tr>
<tr>
<td></td>
<td>2.3 El estudio de los sistemas complejos</td>
</tr>
<tr>
<td></td>
<td>2.4 La dinámica de los sistemas complejos</td>
</tr>
<tr>
<td>3</td>
<td>La interdisciplina</td>
</tr>
<tr>
<td></td>
<td>3.1 El papel de la investigación científica en el análisis y construcción de soluciones a los problemas ambientales: una revisión crítica</td>
</tr>
<tr>
<td></td>
<td>3.2 La ciencia post-normal</td>
</tr>
<tr>
<td></td>
<td>3.3 La articulación disciplinaria</td>
</tr>
<tr>
<td></td>
<td>3.4 La integración en la construcción del conocimiento</td>
</tr>
<tr>
<td></td>
<td>3.5 La investigación interdisciplinaria</td>
</tr>
<tr>
<td>4</td>
<td>El abordaje socio-ecológico</td>
</tr>
<tr>
<td></td>
<td>4.1 La relación sociedad-naturaleza: historia de su concepción</td>
</tr>
<tr>
<td></td>
<td>4.2 Los sistemas socio-ecológicos</td>
</tr>
<tr>
<td>5</td>
<td>Trans-escalidad</td>
</tr>
<tr>
<td></td>
<td>5.1 Definiciones y tipos de escalas</td>
</tr>
<tr>
<td></td>
<td>5.2 Escalas y niveles de organización</td>
</tr>
<tr>
<td></td>
<td>5.3 Trans-escalidad y sistemas</td>
</tr>
<tr>
<td>6</td>
<td>Sustentabilidad</td>
</tr>
</tbody>
</table>
Unidad | Tema y Subtemas
---|---
6.1 | Origen del concepto: aspectos históricos
6.2 | La sustentabilidad como concepto dinámico y multidimensional
6.3 | Métodos de evaluación de sustentabilidad
6.4 | De indicadores a métodos integrados de evaluación
7 | Los enfoques participativos
7.1 | El concepto de participación
7.2 | Investigación-acción participativa
7.3 | Evaluación rápida participativa
7.4 | Participación y políticas públicas
8 | Comunicación y educación ambientales
8.1 | Intervenciones comunicativas en la construcción de soluciones a los problemas ambientales
8.2 | Comunicación intersectorial
8.3 | Concepciones y debates en torno a la Educación Ambiental
8.4 | Elementos centrales de la Educación Ambiental

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
- Exposición oral (X)
- Exposición audiovisual ()
- Ejercicios dentro de clase ()
- Ejercicios fuera del aula ()
- Seminarios (X)
- Lecturas obligatorias (X)
- Trabajo de Investigación (X)
- Prácticas de taller o laboratorio ()
- Prácticas de campo ()
- Otros:

Mecanismos de evaluación de aprendizaje de los alumnos:
- Exámenes Parciales (X)
- Examen final escrito ()
- Trabajos y tareas fuera del aula (X)
- Exposición de seminarios por los alumnos (X)
- Participación en clase (X)
- Asistencia ()
- Seminario ()
- Otras:

Perfil profesiográfico:
El profesor o profesoras deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en bases conceptuales para el manejo de ecosistemas, así como tener experiencia docente.
BASES ECOLOGICAS PARA EL MANEJO DE ECOSISTEMAS

<table>
<thead>
<tr>
<th>Denominación:</th>
<th>BASES ECOLOGICAS PARA EL MANEJO DE ECOSISTEMAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clave:</td>
<td></td>
</tr>
<tr>
<td>Semestre(s):</td>
<td>1</td>
</tr>
<tr>
<td>Campo de Conocimiento:</td>
<td>Manejo Integral de Ecosistemas</td>
</tr>
<tr>
<td>No. Créditos:</td>
<td>8</td>
</tr>
<tr>
<td>Carácter:</td>
<td>Optativo de elección</td>
</tr>
<tr>
<td>Tipo:</td>
<td>Teórica</td>
</tr>
<tr>
<td>Horas Teoría:</td>
<td>4</td>
</tr>
<tr>
<td>Horas Práctica:</td>
<td>0</td>
</tr>
<tr>
<td>Horas por semana:</td>
<td>4</td>
</tr>
<tr>
<td>Horas al Semestre:</td>
<td>64</td>
</tr>
<tr>
<td>Modalidad:</td>
<td>Curso</td>
</tr>
<tr>
<td>Duración del programa:</td>
<td>Semestral</td>
</tr>
</tbody>
</table>

Serías: Sin Seriación (X) Obligatoria () Indicativa ()

Objetivo general:
Este curso pretende:

- a) Proveer bases biológicas/ecológicas útiles para el entendimiento de los problemas ambientales;
- b) Introducir a los estudiantes a la dinámica de los sistemas ambientales a distintas escalas espacio-temporales;
- c) Introducir a los estudiantes a las bases teóricas de las principales problemáticas ambientales.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
<th>Teóricas</th>
<th>Prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Bases a nivel de organismos</td>
<td>12</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Bases ecológicas a nivel de poblaciones</td>
<td>12</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Bases ecológicas a nivel de comunidades</td>
<td>12</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Bases ecológicas a nivel de ecosistemas</td>
<td>12</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Bases ecológicas a nivel global</td>
<td>12</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

Total de horas: 64
Suma total de horas: 64

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td>1.1</td>
<td>Escalas espaciales y temporales: importancia en estudios ambientales y su problemática</td>
</tr>
<tr>
<td>1.2</td>
<td>Estructura y funcionamiento: enfoque sistémico, organización jerárquica, propiedades emergentes, interacciones directas y difusas entre los componentes</td>
</tr>
<tr>
<td>1.3</td>
<td>Patrones y procesos a diferentes niveles de organización</td>
</tr>
<tr>
<td>1.4</td>
<td>Concepto de equilibrio: equilibrio y persistencia, componentes del equilibrio</td>
</tr>
<tr>
<td>2</td>
<td>Bases a nivel de organismos</td>
</tr>
<tr>
<td>2.1</td>
<td>Nicho ecológico: Introducción a la teoría del nicho. Ejemplificar importancia del nicho con ejemplos de invasiones bióticas</td>
</tr>
<tr>
<td>2.2</td>
<td>Normas de reacción y ecosistemología</td>
</tr>
<tr>
<td>2.3</td>
<td>Historias de vida: Introducción a la teoría de historias de vida. Ejemplificar importancia de historias de vida aplicadas al manejo por medio de ejemplos de riesgos de extinción</td>
</tr>
<tr>
<td>3</td>
<td>Bases ecológicas a nivel de poblaciones</td>
</tr>
<tr>
<td>3.1</td>
<td>Teoría demográfica</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Introducción a la teoría demográfica</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Patrones a nivel demográfico: tamaño de la población, proporción de sexos, proporción de individuos de diferente talla o estado de desarrollo. Ejemplificar con importancia del tamaño demográfico para asegurar la viabilidad de las poblaciones, y mencionar criterios para la identificación de especies en peligro de extinción.</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Procesos a nivel demográfico: nacimientos, muertes, migración, transiciones entre estados de desarrollo o categorías de tamaño. Ejemplificar todo lo anterior en función de aplicaciones demográficas para el manejo, concretamente para el aprovechamiento, señalando las limitaciones de incorporar exclusivamente una visión demográfica al aprovechamiento</td>
</tr>
<tr>
<td>3.2</td>
<td>Genética de Poblaciones</td>
</tr>
</tbody>
</table>
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en bases ecológicas para el manejo de ecosistemas, así como tener experiencia docente.

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1</td>
<td>Patrones de genética de poblaciones: Estructura genética de una población, diversidad genética y formas de medirla. Ejemplificar con aspectos de conservación, hablar de erosión genética y re-visitar el tamaño viable de la población considerando la diversidad genética</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Procesos de genética de poblaciones: Sistemas de apareamiento, dispersión en el espacio y en el tiempo, identificar cómo las prácticas de manejo pueden interferir con estos procesos. Ejemplificar con domesticación de especies</td>
</tr>
<tr>
<td>4</td>
<td>Bases ecológicas a nivel de comunidades</td>
</tr>
<tr>
<td>4.1</td>
<td>Patrones a nivel comunitario: Diversidad de especies (alfa, beta y gama), densidad de especies, dominancia. Ejemplificar con alteraciones a la dominancia relativa de especies como consecuencia del aprovechamiento</td>
</tr>
<tr>
<td>4.2</td>
<td>Procesos a nivel comunitario</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Interacciones interespecíficas: mutualismo, competencia, depredación. Redes Tróficas. Ejemplificar con control biológico de especies invasoras, y del uso de especies mutualistas para crear ensambles de especies útiles en restauración</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Ejercicios dentro de clase</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Primaria</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Secundaria</td>
</tr>
<tr>
<td>4.2.2.3</td>
<td>Disturbio</td>
</tr>
<tr>
<td>4.3</td>
<td>Ejemplificar con importancia y limitaciones de la sucesión en la restauración</td>
</tr>
<tr>
<td>5</td>
<td>Bases ecológicas a nivel de ecosistemas</td>
</tr>
<tr>
<td>5.1</td>
<td>Definición de ecosistemas: estructura y funcionamiento</td>
</tr>
<tr>
<td>5.2</td>
<td>Patrones a nivel ecosistema: almacenes. Ejemplificar cómo el aprovechamiento puede modificar drásticamente los almacenes de diferentes nutrimentos</td>
</tr>
<tr>
<td>5.3</td>
<td>Procesos a nivel ecosistema: flujos</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Balance Hídrico</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Procesos biogeométricos a escala de ecosistemas: entradas y salidas de los nutrientes en el suelo; adquisición y utilización de nutrientes por las plantas; retorno de nutrientes al suelo</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Energética: productividad primaria neta; productividad secundaria neta; redes tróficas: cadenas y factores que regulan su longitud; balance energético</td>
</tr>
<tr>
<td>5.4</td>
<td>Ejemplificar todo lo anterior con servicios Ecosistématicos de regulación</td>
</tr>
<tr>
<td>6</td>
<td>Bases ecológicas a nivel global</td>
</tr>
<tr>
<td>6.1</td>
<td>Cambio global</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Balance Global del Agua: patrones de distribución del agua a escala planetaria (en que sitios hay déficit de agua desde el punto de balance hídrico)</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Ciclos Globales de C, N y P</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Cambio Global: factores procesos y consecuencias</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Migración de especies en respuesta al cambio climático</td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

- Exámenes Parciales (X)
- Examen final escrito (X)
- Trabajos y tareas fuera del aula (X)
- Exposición de seminarios por los alumnos (X)
- Participación en clase (X)
- Asistencia (X)
- Seminario (X)
- Otras: (X)

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en bases ecológicas para el manejo de ecosistemas, así como tener experiencia docente.
Denominación: BASES SOCIALES PARA EL MANEJO DE ECOSISTEMAS
Clave: Semestre(s): 1 Campo de Conocimiento: Manejo Integral de Ecosistemas No. Créditos: 8
Carácter: Optativo de elección Horas Horas por semana Horas al Semestre
Tipo: Teórica Teoría: 4 Práctica: 0 4 64
Modalidad: Curso Duración del programa: Semestral

Seriación: Sin Seriación (X) Obligatoria () Indicativa ()
Objetivo general:
Este curso pretende:
a) Introducir a los estudiantes a conceptos sociales útiles para el análisis de los problemas ambientales.
b) Proveer conocimientos teóricos para analizar sistemas sociales en relación con los problemas ambientales.
c) Presentar enfoques y herramientas metodológicos para el análisis sociedad-naturaleza.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción conceptual a la sociedad</td>
</tr>
<tr>
<td></td>
<td>1.1 ¿Qué es sociedad?</td>
</tr>
<tr>
<td></td>
<td>1.2 Distintas nociones de territorio</td>
</tr>
<tr>
<td></td>
<td>1.3 Tipos de sociedad: urbana, rural y sus interrelaciones</td>
</tr>
<tr>
<td></td>
<td>1.4 Formación social y económica</td>
</tr>
<tr>
<td></td>
<td>1.5 Organización social e instituciones</td>
</tr>
<tr>
<td></td>
<td>1.6 Sujetos sociales, actores y agentes</td>
</tr>
<tr>
<td>2</td>
<td>Relación sociedad-naturaleza</td>
</tr>
<tr>
<td></td>
<td>2.1 Perspectivas de análisis de la relación sociedad-naturaleza, marcos conceptuales</td>
</tr>
<tr>
<td></td>
<td>2.1.1 Sistemas socio-ecológicos</td>
</tr>
<tr>
<td></td>
<td>2.1.2 Metabolismo social</td>
</tr>
<tr>
<td></td>
<td>2.1.3. Manejo de bienes comunes</td>
</tr>
<tr>
<td></td>
<td>2.1.4. Resiliencia</td>
</tr>
<tr>
<td>3</td>
<td>Métodos de investigación social</td>
</tr>
<tr>
<td></td>
<td>3.1 Ética y responsabilidad social de la ciencia</td>
</tr>
<tr>
<td></td>
<td>3.2 Ciencias Sociales y manejo de ecosistemas</td>
</tr>
<tr>
<td></td>
<td>3.3 Paradigmas de investigación en Ciencias Sociales</td>
</tr>
<tr>
<td></td>
<td>3.4 Diseño de investigación</td>
</tr>
<tr>
<td></td>
<td>3.4.1 Observación y observación participante</td>
</tr>
<tr>
<td></td>
<td>3.4.2 Grupo focal</td>
</tr>
<tr>
<td></td>
<td>3.4.3 Entrevista</td>
</tr>
<tr>
<td></td>
<td>3.4.4 Encuesta</td>
</tr>
<tr>
<td></td>
<td>3.4.5 Análisis de datos cualitativos</td>
</tr>
<tr>
<td>4</td>
<td>Economía e instrumentos de política pública</td>
</tr>
<tr>
<td></td>
<td>4.1 Introducción a la economía</td>
</tr>
<tr>
<td></td>
<td>4.2 El mercado como asignador de recursos</td>
</tr>
<tr>
<td></td>
<td>4.3 Valoración económica</td>
</tr>
<tr>
<td></td>
<td>4.4 Pago por servicios ambientales</td>
</tr>
<tr>
<td></td>
<td>4.5 Medios de vida sostenibles</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

<table>
<thead>
<tr>
<th>Sugerencias didácticas:</th>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral</td>
<td>(X) Exámenes Parciales</td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td>() Examen final escrito</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>() Trabajos y tareas fuera del aula</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>() Exposición de seminarios por los alumnos</td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X) Participación en clase</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>() Asistencia</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>(X) Seminario</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>() Otras:</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
<tr>
<td>Otros:</td>
<td>()</td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en bases sociales para el manejo de ecosistemas, así como tener experiencia docente.
Denominación: ECOSISTEMAS DE MÉXICO Y RESTAURACIÓN
Clave: Semestre(s): 1 Campo de Conocimiento: Manejo Integral de Ecosistemas No. Créditos: 8
Carácter: Optativo de elección Horas Horas por semana Horas al Semestre
Tipo: Teórico-Práctica Teoría: 2 Práctica: 2 4 64
Modalidad: Curso Duración del programa: Semestral

SerKiación: Sin SerKiación (X) Obligatoria () Indicativa ()

Objetivo general:
Analizar las características de los diferentes ecosistemas presentes en México y los factores ambientales que determinan su distribución. El estudiante tendrá una visión completa e integral de los proyectos de restauración que se realizan en el país.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sistemas de clasificación de la vegetación, con énfasis en la de México</td>
</tr>
<tr>
<td></td>
<td>1.1. Formas de vida (biotipos formas de crecimiento, tipos biológicos)</td>
</tr>
<tr>
<td></td>
<td>1.2. La comunidad vegetal</td>
</tr>
<tr>
<td></td>
<td>1.3. El continuum de la vegetación</td>
</tr>
<tr>
<td></td>
<td>1.4. Parámetros de la vegetación: Fisonomía, estructura, fenología, composición florística</td>
</tr>
<tr>
<td></td>
<td>1.5. Flora y vegetación</td>
</tr>
<tr>
<td></td>
<td>1.6. Vegetación primaria y vegetación secundaria</td>
</tr>
<tr>
<td></td>
<td>1.7. Su representación espacial</td>
</tr>
<tr>
<td></td>
<td>1.8. Grandes enfoques para la clasificación de la vegetación</td>
</tr>
<tr>
<td></td>
<td>1.9. Niveles de organización de la vegetación (biomas, series de formaciones, formaciones o tipos de vegetación, asociaciones, consociaciones)</td>
</tr>
<tr>
<td></td>
<td>1.10. El sistema UNESCO para clasificar la vegetación del mundo</td>
</tr>
<tr>
<td></td>
<td>1.11. El Sistema Nacional de Clasificación de vegetación de EE.UU. Las ecorregiones de Norteamérica</td>
</tr>
<tr>
<td></td>
<td>1.12. La Clasificación de México. Desarrollo histórico</td>
</tr>
<tr>
<td>2</td>
<td>Bases conceptuales de la restauración</td>
</tr>
<tr>
<td></td>
<td>2.1 Definiciones, conceptos, desarrollo histórico y problemática socioeconómica de la restauración ecológica</td>
</tr>
<tr>
<td></td>
<td>2.2 Disturbio y degradación ambiental, efectos negativos desde poblaciones hasta ecosistemas</td>
</tr>
<tr>
<td></td>
<td>2.3 Carácter dinámico de los ecosistemas y problemas de escala en restauración ecológica</td>
</tr>
<tr>
<td></td>
<td>2.4 Características de los estados degradados, sucesión ecológica y modelos alternativos</td>
</tr>
</tbody>
</table>

Total de horas: 32 Suma total de horas: 64
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Principios de la restauración ecológica</td>
</tr>
<tr>
<td></td>
<td>3.1 Características abióticas: topografía, régimen hidrológico y suelos</td>
</tr>
<tr>
<td></td>
<td>3.2 Microambiente, ecofisiología y establecimiento de plantas</td>
</tr>
<tr>
<td></td>
<td>3.3 Fauna y restauración, importancia de las interacciones</td>
</tr>
<tr>
<td></td>
<td>3.4 Procesos ecosistémicos, estructura y función</td>
</tr>
</tbody>
</table>

4	Aspectos sociales y económicos de la restauración
	4.1 Actores, toma de decisiones y dinámicas sociales
	4.2 Metas sociales de la restauración ecológica
	4.3 Beneficios tangibles e intangibles de la restauración ecológica
	4.4 Legislación, planes de manejo, ordenamiento territorial y restauración ecológica
	4.5 Ética y cultura en relación con la restauración ecológica

5	La restauración en práctica
	5.1 Elaboración de un proyecto de restauración
	5.2 Técnicas para controlar la topografía y de manejo de suelos
	5.3 Manejo de la vegetación
	5.4 Manejo de fauna
	5.5 Monitoreo de la restauración

6	Experiencias prácticas de restauración
	6.1 Experiencias encaminadas a la restauración a nivel poblacional
	6.2 Experiencias encaminadas a la restauración a nivel comunitario
	6.3 Experiencias encaminadas a la Restauración a nivel de cuenca y manejo de agua

| 7 | Experiencias encaminadas a la restauración a nivel comunitario |

| 8 | Experiencias encaminadas a la Restauración a nivel de cuenca |

Bibliografía Básica:
- CONABIO. *Capital Natural de México*. CONABIO, México 2009
- Rzedowski, J. *La vegetación de México*. 1a edición digital. CONABIO, México 2006

Bibliografía Complementaria:
<table>
<thead>
<tr>
<th>Sugerencias didácticas:</th>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral</td>
<td>Exámenes Parciales</td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td>Examen final escrito</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>Trabajos y tareas fuera del aula</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>Exposición de seminarios por los alumnos</td>
</tr>
<tr>
<td>Seminarios</td>
<td>Participación en clase</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>Asistencia</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>Seminario</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>Otras: Experiencia de ensayo, elaboración de cada una de</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>las experiencias realizadas, reporte de salidas de campo.</td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en ecosistemas de México y restauración, así como tener experiencia docente.
Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interacciones agua-suelo-plantas</td>
</tr>
<tr>
<td>2</td>
<td>Ecofisiología de la germinación y crecimiento</td>
</tr>
<tr>
<td>3</td>
<td>Comunidades animales</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Teóricas</td>
</tr>
<tr>
<td>1</td>
<td>Interacciones agua-suelo-plantas</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Ecofisiología de la germinación y crecimiento</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Comunidades animales</td>
<td>5</td>
</tr>
</tbody>
</table>

Total de horas: 32

Suma total de horas: 64
### Unidad	Tema y Subtemas
4 | Procesos sucesionales
 4.1 Introducción a la sucesión ecológica
 4.2 Componentes
 4.3 Sucesión y restauración ecológica
 4.4 Casos de estudio
5 | Bases y funcionamiento de los ecosistemas marinos y costeros
 5.1 Introducción a los ecosistemas marinos
 5.2 Conectividad, escalas, patrones y procesos
 5.3 La zona costera como ejemplo de restauración
 5.4 Variabilidad natural
 5.4.1 Variabilidad por actividades antropogénicas
 5.5 Diversidad biológica, servicios ecológicos y costos
 5.6 Sistemas de observación de la salud de los mares
 5.6.1 Descriptores de prevención temprana
 5.7 Relevancia e impacto ecológicos
 5.8 Dificultades para su evaluación
6 | Las aguas continentales de México
 6.1 Descripción global y nacional de las aguas continentales
 6.2 Importancia y potencial hidrológico, inventario nacional de aguas continentales
 6.3 Contribución como elementos y actividades productivas en embalses
 6.4 Generación de alimentos, situación actual de su aprovechamiento en México
 6.5 Participación de usuarios de los recursos de aguas continentales
 6.6 La repoblación de organismos acuáticos, impactos, efectos y perspectivas
 6.7 Efectos de la introducción de especies exóticas, esquemas de prevención y restauración
 6.8 Panorama socio-económico y ambiental
 6.9 Revisión de estudios de caso sobresalientes en embalses de México

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
Exposición oral	(X)
Exposición audiovisual	(X)
Ejercicios dentro de clase	()
Ejercicios fuera del aula	(X)
Seminarios	()
Lecturas obligatorias	()
Trabajo de Investigación	(X)
Prácticas de taller o laboratorio	()
Prácticas de campo	(X)
Otros:	

Mecanismos de evaluación de aprendizaje de los alumnos:
Exámenes Parciales	(X)
Examen final escrito	(X)
Trabajos y tareas fuera del aula	(X)
Participación en clase	()
Asistencia	()
Seminario	()
Otras:	

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en elementos básicos de ciencia aplicados a restauración, así como tener experiencia docente.
Denominación: **ESTADÍSTICA EN ECOLOGÍA**

<table>
<thead>
<tr>
<th>Clave:</th>
<th>Semestre(s): 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campo de Conocimiento:</td>
<td>Biología Evolutiva, Ecología, Manejo Integral de Ecosistemas</td>
</tr>
<tr>
<td>No. Créditos:</td>
<td>8</td>
</tr>
<tr>
<td>Carácter: Optativo de elección</td>
<td></td>
</tr>
<tr>
<td>Tipo: Teórico-Práctica</td>
<td></td>
</tr>
<tr>
<td>Horas</td>
<td></td>
</tr>
<tr>
<td>Teoría: 2</td>
<td>Práctica: 2</td>
</tr>
<tr>
<td>Horas por semana</td>
<td>4</td>
</tr>
<tr>
<td>Horas al Semestre</td>
<td>64</td>
</tr>
<tr>
<td>Modalidad: Curso</td>
<td>Duración del programa: Semestral</td>
</tr>
</tbody>
</table>

Objetivo general:
Ofrecer las nociones de estadística necesarias para que el alumno sea capaz de: (1) comprender los análisis estadísticos presentados en artículos científicos, (2) plantear preguntas ecológicas relevantes en términos estadísticos, (3) elaborar diseños de muestreo y de experimentación en el área de la ecología, (4) enfrentarse a situaciones reales que requieren el uso de herramientas estadísticas.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción: La idea de una prueba estadística</td>
</tr>
<tr>
<td></td>
<td>1.1 Variabilidad en poblaciones naturales</td>
</tr>
<tr>
<td></td>
<td>1.2 Idea de una prueba estadística</td>
</tr>
<tr>
<td></td>
<td>1.3 Necesidad de la estadística en biología</td>
</tr>
<tr>
<td></td>
<td>1.4 Hipótesis nulas</td>
</tr>
<tr>
<td></td>
<td>1.5 La importancia del diseño de muestreo y experimental</td>
</tr>
<tr>
<td>2</td>
<td>Herramientas</td>
</tr>
<tr>
<td></td>
<td>2.1 Álgebra de matrices y vectores</td>
</tr>
<tr>
<td></td>
<td>2.2 Hojas de cálculo: ventajas y limitaciones</td>
</tr>
<tr>
<td></td>
<td>2.3 Paquetes de software: “R” y “Mathematica”</td>
</tr>
<tr>
<td></td>
<td>2.4 Elementos de programación en Visual Basic y en “R”</td>
</tr>
<tr>
<td></td>
<td>2.5 Modelos estadísticos y dinámicos</td>
</tr>
<tr>
<td>3</td>
<td>Probabilidad</td>
</tr>
<tr>
<td></td>
<td>3.1 Definiciones de probabilidad</td>
</tr>
<tr>
<td></td>
<td>3.2 El espacio muestral, teoría de conjuntos</td>
</tr>
<tr>
<td></td>
<td>3.3 La teoría matemática de la probabilidad</td>
</tr>
<tr>
<td></td>
<td>3.4 El teorema de Bayes y la probabilidad condicional</td>
</tr>
</tbody>
</table>

Total de horas: 32 32 **Suma total de horas:** 64
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Distribuciones estadísticas</td>
</tr>
<tr>
<td></td>
<td>4.1 Variables aleatorias</td>
</tr>
<tr>
<td></td>
<td>4.2 Poblaciones y muestras</td>
</tr>
<tr>
<td></td>
<td>4.3 Distribuciones discretas y continuas</td>
</tr>
<tr>
<td></td>
<td>4.4 Medidas de tendencia central y de variación</td>
</tr>
<tr>
<td></td>
<td>4.5 El teorema del límite central</td>
</tr>
<tr>
<td>5</td>
<td>Muestreo</td>
</tr>
<tr>
<td></td>
<td>5.1 Variabilidad biológica en el espacio y el tiempo</td>
</tr>
<tr>
<td></td>
<td>5.2 Teoría general del muestreo</td>
</tr>
<tr>
<td></td>
<td>5.3 Diseños de muestreo en ecología</td>
</tr>
<tr>
<td></td>
<td>5.4 Herramientas de inferencia</td>
</tr>
<tr>
<td>6</td>
<td>Pruebas de hipótesis</td>
</tr>
<tr>
<td></td>
<td>6.1 El método científico y el diseño de experimentos</td>
</tr>
<tr>
<td></td>
<td>6.2 El planteamiento de hipótesis</td>
</tr>
<tr>
<td></td>
<td>6.3 Significancia estadística y significancia biológica</td>
</tr>
<tr>
<td></td>
<td>6.4 Pruebas paramétricas, no paramétricas</td>
</tr>
<tr>
<td></td>
<td>6.5 Métodos Monte Carlo</td>
</tr>
<tr>
<td></td>
<td>6.6 Estadística bayesiana</td>
</tr>
<tr>
<td>7</td>
<td>El análisis de varianza (ANOVA)</td>
</tr>
<tr>
<td></td>
<td>7.1 Propiedades de la distribución normal</td>
</tr>
<tr>
<td></td>
<td>7.2 Partición de la varianza en pruebas de hipótesis</td>
</tr>
<tr>
<td></td>
<td>7.3 Diseños experimentales usando ANOVA</td>
</tr>
<tr>
<td></td>
<td>7.4 Pruebas de hipótesis</td>
</tr>
<tr>
<td>8</td>
<td>Regresión y correlaciones lineales</td>
</tr>
<tr>
<td></td>
<td>8.1 Modelos lineales</td>
</tr>
<tr>
<td></td>
<td>8.2 Ajuste por mínimos cuadrados</td>
</tr>
<tr>
<td></td>
<td>8.3 Pruebas de hipótesis</td>
</tr>
<tr>
<td></td>
<td>8.4 Regresión no lineal y métodos alternativos</td>
</tr>
<tr>
<td></td>
<td>8.5 Modelos lineales generalizados (GLMs)</td>
</tr>
<tr>
<td>9</td>
<td>Análisis de datos categóricos</td>
</tr>
<tr>
<td></td>
<td>9.1 Tablas de contingencia de 2x2</td>
</tr>
<tr>
<td></td>
<td>9.2 La distribución</td>
</tr>
<tr>
<td></td>
<td>9.3 Tablas de contingencia: teoría general</td>
</tr>
<tr>
<td></td>
<td>9.4 Pruebas de bondad de ajuste</td>
</tr>
<tr>
<td>10</td>
<td>Pruebas no paramétricas</td>
</tr>
<tr>
<td></td>
<td>10.1 Pruebas de hipótesis no paramétricas</td>
</tr>
<tr>
<td></td>
<td>10.2 Correlación no paramétrica</td>
</tr>
<tr>
<td></td>
<td>10.3 El problema de las muestras pequeñas</td>
</tr>
<tr>
<td>11</td>
<td>Estadística multivariada</td>
</tr>
<tr>
<td></td>
<td>11.1 Métodos de exploración de tendencias</td>
</tr>
<tr>
<td></td>
<td>11.2 Ordenación y clasificación</td>
</tr>
<tr>
<td></td>
<td>11.3 La distribución normal multivariada</td>
</tr>
<tr>
<td></td>
<td>11.4 Análisis de varianza multivariado (MANOVA)</td>
</tr>
<tr>
<td></td>
<td>11.5 Regresión y correlación múltiples</td>
</tr>
<tr>
<td>12</td>
<td>Temas especiales de ecología estadística</td>
</tr>
<tr>
<td></td>
<td>12.1 Pseudorrepetición: teoría y práctica</td>
</tr>
<tr>
<td></td>
<td>12.2 Modelos nulos</td>
</tr>
<tr>
<td></td>
<td>12.3 Alometría y análisis de escalas</td>
</tr>
<tr>
<td></td>
<td>12.4 Inferencia bayesiana</td>
</tr>
<tr>
<td></td>
<td>12.5 Meta-análisis</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Actividad</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral</td>
<td>(X)</td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td>()</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X)</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>()</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>()</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

<table>
<thead>
<tr>
<th>Mecanismo</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exámenes Parciales</td>
<td>(X)</td>
</tr>
<tr>
<td>Examen final escrito</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
<td>()</td>
</tr>
<tr>
<td>Participación en clase</td>
<td>()</td>
</tr>
<tr>
<td>Asistencia</td>
<td>()</td>
</tr>
<tr>
<td>Seminario</td>
<td>()</td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en estadística, así como tener experiencia docente.
Denominación:
FUNDAMENTOS DE ECOLOGÍA

Clave:
Semestre(s): 1

Campo de Conocimiento:
Ecología, Manejo Integral de Ecosistemas

No. Créditos:
8

Carácter:
Optativo de elección

Horas
<table>
<thead>
<tr>
<th>Tipo</th>
<th>Teoría</th>
<th>Práctica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horas por semana</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Horas al Semestre</td>
<td>4</td>
<td>64</td>
</tr>
</tbody>
</table>

Modalidad:
Curso | Duración del programa: Semestral

Seriación:
Sin Seriación (X) Obligatoria () Indicativa ()

Objetivo general:
Este curso pretende brindar a los estudiantes del Posgrado en Ciencias Biológicas las bases teóricas en el estudio de la ecología, así como estimular y desarrollar su comprensión de los aspectos más relevantes de esta área del conocimiento.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
<th>Teóricas</th>
<th>Prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>总 de horas:</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>Suma total de horas:</td>
<td>64</td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td>1.1</td>
<td>Definiciones y Aproximaciones</td>
</tr>
<tr>
<td>1.2</td>
<td>Niveles de Organización</td>
</tr>
<tr>
<td>1.3</td>
<td>Divisiones de Ecología</td>
</tr>
<tr>
<td>2</td>
<td>Factores Bióticos y Abióticos</td>
</tr>
<tr>
<td>2.1</td>
<td>Condiciones y Recursos</td>
</tr>
<tr>
<td>2.2</td>
<td>Efectos de los factores ecológicos sobre los organismos</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Distribución de los organismos</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Ecofisiología</td>
</tr>
<tr>
<td>3</td>
<td>Poblaciones</td>
</tr>
<tr>
<td>3.1</td>
<td>Definición de población</td>
</tr>
<tr>
<td>3.2</td>
<td>Características de las poblaciones</td>
</tr>
<tr>
<td>3.3</td>
<td>Introducción a la teoría demográfica</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Patrones a nivel demográfico: tamaño de la población, proporción de sexos, proporción de individuos de diferente talla o estado de desarrollo</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Procesos a nivel demográfico: nacimientos, muertes, migración, transiciones entre estados de desarrollo o categorías de tamaño</td>
</tr>
<tr>
<td>3.4</td>
<td>Genética de poblaciones</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Patrones de genética de poblaciones: Estructura genética de una población, diversidad genética y formas de medirla</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Procesos de genética de poblaciones: Sistemas de apareamiento, dispersión en el espacio y en el tiempo, identificar como las prácticas de manejo pueden interferir con estos procesos</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>4</td>
<td>Historias de vida y estrategias de historias de vida</td>
</tr>
<tr>
<td></td>
<td>4.1 Conceptos básicos</td>
</tr>
<tr>
<td></td>
<td>4.2 Estrategias de historias de vida</td>
</tr>
<tr>
<td></td>
<td>4.3 Parámetros de historias de vida</td>
</tr>
<tr>
<td></td>
<td>4.4 Tipos de historias de vida</td>
</tr>
<tr>
<td></td>
<td>4.5 El principio de asignación de la energía: Compromisos (Trade-offs)</td>
</tr>
<tr>
<td>5</td>
<td>Interacciones Bióticas</td>
</tr>
<tr>
<td></td>
<td>5.1 Clasificación de las interacciones</td>
</tr>
<tr>
<td></td>
<td>5.2 Competencia</td>
</tr>
<tr>
<td></td>
<td>5.2.1 Competencia intraespecífica</td>
</tr>
<tr>
<td></td>
<td>5.2.1.1 Modelos</td>
</tr>
<tr>
<td></td>
<td>5.2.2 Competencia interespecífica</td>
</tr>
<tr>
<td></td>
<td>5.2.2.1 Modelos</td>
</tr>
<tr>
<td></td>
<td>5.2.2.2 Exclusión competitiva y evasión de la competencia</td>
</tr>
<tr>
<td></td>
<td>5.2.2.3 Teoría del Nicho</td>
</tr>
<tr>
<td></td>
<td>5.3 Depredación</td>
</tr>
<tr>
<td></td>
<td>5.3.1 Tipos de depredación</td>
</tr>
<tr>
<td></td>
<td>5.3.2 Depredadores verdaderos</td>
</tr>
<tr>
<td></td>
<td>5.3.3 Herbivoría</td>
</tr>
<tr>
<td></td>
<td>5.3.4 Parasitismo y parasitoidismo</td>
</tr>
<tr>
<td></td>
<td>5.4 Mutualismo</td>
</tr>
<tr>
<td></td>
<td>5.4.1 Protocoperación</td>
</tr>
<tr>
<td></td>
<td>5.4.2 Endofitismo</td>
</tr>
<tr>
<td></td>
<td>5.4.3 Simbiosis</td>
</tr>
<tr>
<td>6</td>
<td>Comunidades</td>
</tr>
<tr>
<td></td>
<td>6.1 Definición</td>
</tr>
<tr>
<td></td>
<td>6.2 Propiedades de las comunidades</td>
</tr>
<tr>
<td></td>
<td>6.3 Clasificación de las comunidades</td>
</tr>
<tr>
<td></td>
<td>6.4 Las comunidades en el tiempo</td>
</tr>
<tr>
<td></td>
<td>6.4.1 Fenología</td>
</tr>
<tr>
<td></td>
<td>6.4.2 Dinámica de comunidades, sucesión y dinámicas no lineales</td>
</tr>
<tr>
<td></td>
<td>6.5 Diversidad</td>
</tr>
<tr>
<td></td>
<td>6.5.1 Definición de diversidad biológica</td>
</tr>
<tr>
<td></td>
<td>6.5.2 Medición de la diversidad biológica</td>
</tr>
<tr>
<td></td>
<td>6.5.3 Especies clave</td>
</tr>
<tr>
<td></td>
<td>6.5.4 Recursos clave</td>
</tr>
<tr>
<td></td>
<td>6.5.5 Diversidad alfa y beta</td>
</tr>
<tr>
<td>7</td>
<td>Ecosistemas</td>
</tr>
<tr>
<td></td>
<td>7.1 Definición de ecosistemas: estructura y funcionamiento</td>
</tr>
<tr>
<td></td>
<td>7.2 Patrones a nivel ecosistema: Almacenes</td>
</tr>
<tr>
<td></td>
<td>7.3 Procesos a nivel ecosistema: flujos</td>
</tr>
<tr>
<td></td>
<td>7.3.1 Balance hídrico</td>
</tr>
<tr>
<td></td>
<td>7.3.2 Procesos Biogeoquímicos a escala de ecosistemas: entradas y salidas de los nutrientes del ecosistema; disponibilidad de nutrientes en el suelo; adquisición y utilización de nutrientes por las plantas; retorno de nutrientes al suelo</td>
</tr>
<tr>
<td></td>
<td>7.3.3 Energética: productividad primaria neta; productividad secundaria neta; redes tróficas: cadenas y factores que regulan su longitud; balance energético</td>
</tr>
<tr>
<td>8</td>
<td>Bases ecológicas a nivel global</td>
</tr>
<tr>
<td></td>
<td>8.1 Cambio global</td>
</tr>
<tr>
<td></td>
<td>8.2 Balance Global del Agua: patrones de distribución del agua a escala planetaria (en que sitios hay déficit de agua desde el punto de balance hídrico)</td>
</tr>
<tr>
<td></td>
<td>8.3 Ciclos Globales de C, N y P</td>
</tr>
<tr>
<td></td>
<td>8.4 Cambio Global: factores procesos y consecuencias</td>
</tr>
<tr>
<td></td>
<td>8.5 Migración de especies en respuesta al cambio climático</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

- Keller C. F., Global warming: a review of this mostly settled issue *Stochastic Environmental Research and Risk Assessment*, Berlin, 23, 2009, 643-676.

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Actividad</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral</td>
<td></td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X)</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>()</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
<tr>
<td>Otros</td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

<table>
<thead>
<tr>
<th>Evaluación</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exámenes Parciales</td>
<td></td>
</tr>
<tr>
<td>Examen final escrito</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
<td>(X)</td>
</tr>
<tr>
<td>Participación en clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Asistencia</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminario</td>
<td>(X)</td>
</tr>
<tr>
<td>Otras</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en ecología, así como tener experiencia docente.
Denominación
SISTEMAS DE INFORMACIÓN GEOGRÁFICA Y MODELACIÓN ESPACIAL

<table>
<thead>
<tr>
<th>Clave:</th>
<th>Semestre(s): 1</th>
<th>Campo de Conocimiento:</th>
<th>Manejo Integral de Ecosistemas</th>
<th>No. Créditos: 8</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Carácter:</th>
<th>Optativo de elección</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tipo:</th>
<th>Teórica</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modalidad:</th>
<th>Curso</th>
</tr>
</thead>
</table>

Duración del programa: Semestral

Objetivo general:
Conocer la tecnología e instrumentos más modernos para el análisis de información espacial.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Concepto y uso de los sistemas de información geográfica</td>
</tr>
<tr>
<td>1.1</td>
<td>Definición y componentes de un SIG</td>
</tr>
<tr>
<td>1.2</td>
<td>Aspectos históricos</td>
</tr>
<tr>
<td>1.3</td>
<td>Aplicaciones de los SIGs en Biología</td>
</tr>
<tr>
<td>1.4</td>
<td>Tipos de SIGs</td>
</tr>
<tr>
<td>2</td>
<td>Organización y estructura de datos en un SIG</td>
</tr>
<tr>
<td>2.1</td>
<td>Representación de mapas en computadora</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Modelos de datos y estructura de datos para el manejo de información cartográfica digital</td>
</tr>
<tr>
<td>2.2</td>
<td>Formatos de almacenamiento y codificación</td>
</tr>
<tr>
<td>2.2.1</td>
<td>El modelo de datos en forma de celda (o raster)</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Estructura de datos en el modelo celda</td>
</tr>
<tr>
<td>2.2.3</td>
<td>El modelo de datos vectorial</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Estructura de datos en el modelo vectorial</td>
</tr>
<tr>
<td>2.3</td>
<td>Concepto de topología</td>
</tr>
<tr>
<td>2.4</td>
<td>Sistemas gestores de bases de datos</td>
</tr>
<tr>
<td>3</td>
<td>Conceptos de datos geográficos</td>
</tr>
<tr>
<td>3.1</td>
<td>Características de los mapas</td>
</tr>
<tr>
<td>3.2</td>
<td>Proyecciones y coordenadas geográficas</td>
</tr>
<tr>
<td>3.3</td>
<td>Escalas y su importancia</td>
</tr>
<tr>
<td>3.4</td>
<td>Leyenda de los mapas</td>
</tr>
<tr>
<td>4</td>
<td>fuentes de información para un SIG</td>
</tr>
<tr>
<td>4.1</td>
<td>Información digital existente</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Importación y exportación de datos</td>
</tr>
<tr>
<td>4.2</td>
<td>Construyendo datos propios</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Captura manual (Digitación)</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Captura automática (barredor –“escaneo”)</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Edición de datos</td>
</tr>
<tr>
<td>4.3</td>
<td>Georeferenciación de mapas</td>
</tr>
<tr>
<td>5</td>
<td>Pre-procesamiento de datos</td>
</tr>
</tbody>
</table>

| Total de horas: | 64 |
| Suma total de horas: | 64 |

Contenido Temático
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
</table>
| 5 | 5.1 Conversión de estructura de datos
 5.2 Reducción de datos y generalización
 5.3 Detección de errores y corrección
 5.4 Unión de mapas
 5.5 Interpolación |
| 6 | Manejo de datos de atributos
 6.1 Concepto de bases de datos
 6.2 Tipos principales de bases de datos
 6.3 Búsqueda temática
 Recuperación de información mediante especificación simbólica o nominal
 Recuperación de información mediante especificación aritmética y/o lógica
 6.4 Búsqueda espacial de información |
| 7 | Manejo de datos espaciales
 7.1 Reclasificación y superposición de mapas
 7.2 Medición de magnitudes y de formas
 7.3 Patrones de distribución espacial
 7.4 Cálculo de distancias y proximidad. Zonas de influencia. Caminos óptimos
 7.5 Modelos digitales de elevaciones y modelos derivados |
| 8 | Modelado espacial
 8.1 Concepto
 8.2 Modelos cartográficos (superposición de mapas)
 8.3 Modelando procesos para toma de decisiones
 8.3.1 Método de evaluación multicriterio en un SIG
 8.3.2 Problemas de utilización en un SIG |
| 9 | Trabajo de campo
 El trabajo de campo incluye dos prácticas enfocadas a cubrir los siguientes objetivos particulares
 9.1 Invoclar a los alumnos en el uso del Sistema de Posicionamiento Global
 9.2 Adquirir información de campo para evaluar la exactitud de los ejercicios de clasificación de imágenes de satélite |

Bibliografía Básica:

Bibliografía Complementaria:
- Shamsi, V. M., GIS tools for water, wastewater and stormwater system, ASCE. Reston, 2002.

Sugerencias didácticas:
Exposición oral	()
Exposición audiovisual	()
Ejercicios dentro de clase	(X)
Ejercicios fuera del aula	(X)
Seminarios	()
Lecturas obligatorias	(X)
Trabajo de Investigación	()
Prácticas de taller o laboratorio	()
Prácticas de campo	()
Otros:	

Mecanismos de evaluación de aprendizaje de los alumnos:
Exámenes Parciales	(X)
Examen final escrito	(X)
Trabajos y tareas fuera del aula	(X)
Exposición de seminarios por los alumnos	()
Participación en clase	(X)
Asistencia	(X)
Seminario	()
Otras:	

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en sistemas de información geográfica y modelado espacial, así como tener experiencia docente.
Denominación: SOCIEDAD, ECONOMÍA Y LEGISLACIÓN AMBIENTAL
Clave: Semestre(s): 1
Campo de Conocimiento: Manejo Integral de Ecosistemas
No. Créditos: 8
Carácter: Optativo de elección
Tipo: Teórico-Práctica
Horas por semana: Teoría: 2
Horas al Semestre: Práctica: 2
Horas al Semestre: 4
No. Créditos: 64
Modalidad: Curso
Duración del programa: Semestral

Seriacion: Sin Seriacion (X)
**Obligatoria ()
Indicativa ()

Objetivo general: Conocer las bases de la legislación ambiental con relación al manejo de los ecosistemas

Indice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
<th>Horas</th>
</tr>
</thead>
</table>
| 1 | Introducción a la bio-economía o economía de recursos naturales
1.1 Dinámica elemental de poblaciones bajo uso y manejo. El concepto de “Máximo Rendimiento Sostenible” y su crítica
1.1.1 Crecimiento exponencial y crecimiento logístico en las poblaciones biológicas
1.1.2 El ‘excedente reproductivo’ y el ‘MRS’ de las especies silvestres
1.1.3 Modelos logístico generalizados: depensación
1.1.4 Biodiversidad, ecosistemas, incertidumbre y refugios de cosecha
1.2 Introduciendo a los agentes económicos: modelos económicos de cosecha de recursos renovables, derechos de propiedad y externalidades
1.2.1 Acceso abierto y la sobreexplotación biológica y económica de los recursos comunes
1.2.2 Manejo óptimo individual y política de cosecha óptima. Los recursos naturales renovables como capital (tasas de interés y descuento y la sustitución recurso-capital)
1.2.3 Propiedad común regulada y no regulada
1.2.4 Propiedad, privatización y gobierno: implicaciones para la sustentabilidad
1.2.5 Sobre-explotación y sub-conservación debidos a la pobreza
1.2.6 Otros agentes involucrados: externalidades, sociedad civil y acuerdos internacionales
1.3 Los valores de la conservación y las formas de ‘sustentabilidad’ | Teóricas | Prácticas |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Economía y política ambiental: perspectivas clásicas y no tan clásicas</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Aspectos Sociales de las Prácticas de Uso de los Recursos Naturales en México</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Aspectos sociales relacionados con el uso de recursos naturales en México</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Reflexiones en torno al capital social en la propuesta de desarrollo</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Economía y sociedad campesinas. Marco jurídico de la tenencia de la tierra</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Las sociedades indígenas en México y sus estilos de manejo de los ecosistemas y recursos naturales</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>El estado moderno y la cuestión ambiental</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Antecedentes del Derecho Ambiental en México</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>Principios e instrumentos de la legislación ambiental (1988-1996)</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>Instrumentos para la restauración</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Suma total de horas:</td>
<td>64</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>1.3.1</td>
<td>Dilemas de la conservación: ¿Cuándo y para quién es económicamente deseable la extinción? ¿Por qué una política de conservación, si tenemos sustitutos artificiales?</td>
<td></td>
</tr>
<tr>
<td>1.3.2</td>
<td>¿Qué restauramos cuando hacemos restauración ecológica? Los valores de la conservación. Valores privados vs. Valores sociales</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Sustentabilidad productiva, ecológica y socio-económica: compatibilidades y conflictos</td>
<td></td>
</tr>
<tr>
<td>1.4.1</td>
<td>Especialización productiva y sus consecuencias sobre la biodiversidad</td>
<td></td>
</tr>
<tr>
<td>1.4.2</td>
<td>Los beneficios para la conservación del uso comercial consumitivo</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>Muy brevemente (en dos horas) ¿qué hacen los economistas de recursos naturales?: Control Óptimo y algunos modelos de manejo complejos y/o complicados</td>
<td></td>
</tr>
<tr>
<td>1.5.1</td>
<td>El problema del control y el principio del máximo</td>
<td></td>
</tr>
<tr>
<td>1.5.2</td>
<td>Políticas óptimas de inversión. Un ejemplo: regulación por impuestos</td>
<td></td>
</tr>
<tr>
<td>1.5.3</td>
<td>Sistemas dinámicos y modelos no-lineales</td>
<td></td>
</tr>
<tr>
<td>1.5.4</td>
<td>Modelos con estructuras de edades (manejo forestal)</td>
<td></td>
</tr>
<tr>
<td>1.5.5</td>
<td>Modelos con interacciones biológicas y poblaciones pequeñas</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Economía y política ambiental: perspectivas clásicas y no tan clásicas</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>¿Qué es la economía ambiental?: una introducción</td>
<td></td>
</tr>
<tr>
<td>2.1.1</td>
<td>El enfoque económico y los incentivos</td>
<td></td>
</tr>
<tr>
<td>2.1.2</td>
<td>Los conceptos de eficiencia y equidad, y el diseño de las políticas ambientales</td>
<td></td>
</tr>
<tr>
<td>2.1.3</td>
<td>Análisis costo-efectividad y costo-beneficio</td>
<td></td>
</tr>
<tr>
<td>2.1.4</td>
<td>Economía y política: efectos distributivos, fenómenos internacionales</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Teoría de las externalidades y los bienes públicos</td>
<td></td>
</tr>
<tr>
<td>2.2.1</td>
<td>Definiciones y clasificación</td>
<td></td>
</tr>
<tr>
<td>2.2.2</td>
<td>Imperfecciones de mercado, regulación e instituciones</td>
<td></td>
</tr>
<tr>
<td>2.2.3</td>
<td>Imperfecciones de gobierno</td>
<td></td>
</tr>
<tr>
<td>2.2.4</td>
<td>Incertidumbre y la selección de instrumentos de política: precios o estándares?</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Análisis de proyectos ambientales y los problemas de la valoración</td>
<td></td>
</tr>
<tr>
<td>2.3.1</td>
<td>Análisis de impactos, costo-efectividad, costo-beneficio y riesgos</td>
<td></td>
</tr>
<tr>
<td>2.3.2</td>
<td>Medición directa e indirecta de beneficios y daños</td>
<td></td>
</tr>
<tr>
<td>2.3.3</td>
<td>Problemas en el cálculo de beneficios</td>
<td></td>
</tr>
<tr>
<td>2.3.4</td>
<td>La perspectiva de costos: costos de oportunidad, de instalaciones individuales, de regulación a escala local y nacional</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Análisis de política ambiental</td>
<td></td>
</tr>
<tr>
<td>2.4.1</td>
<td>Criterios</td>
<td></td>
</tr>
<tr>
<td>2.4.2</td>
<td>Políticas descentralizadas: leyes y normas</td>
<td></td>
</tr>
<tr>
<td>2.4.3</td>
<td>Estrategias de regulación directa y control: estándares</td>
<td></td>
</tr>
<tr>
<td>2.4.4</td>
<td>Estrategias basadas en incentivos: impuestos, incentivos, cuotas y permisos negociables</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Contabilidad macro-ambiental y el ambiente</td>
<td></td>
</tr>
<tr>
<td>2.5.1</td>
<td>La economía como sistema abierto. El PIB y sus críticas ambientalistas</td>
<td></td>
</tr>
<tr>
<td>2.5.2</td>
<td>La contabilidad nacional y la pérdida de ‘patrimonio natural’. Gastos defensivos vs. compensatorios</td>
<td></td>
</tr>
<tr>
<td>2.5.3</td>
<td>Correcciones monetarias vs. cuentas físicas satélites</td>
<td></td>
</tr>
<tr>
<td>2.5.4</td>
<td>Los criterios de Roelie Hueting</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Aspectos Sociales de las Prácticas de Uso de los Recursos Naturales en México</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Elementos epistemológicos y metodológicos para el abordaje de problemas ambientales considerados como “sistemas complejos”</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Revisión de las propuestas de Jean Piaget, Rolando García, Fernando Tudela, su aplicación en el diseño de proyectos de investigación sobre problemáticas ambientales</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Aspectos sociales relacionados con el uso de recursos naturales en México</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Polémica sobre los recursos comunes</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>La teoría de la acción colectiva y la gestión de los recursos naturales</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Las condiciones de gestión de los recursos de acceso común, instituciones locales, grupos usuarios, estado de los recursos</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Reflexiones en torno al capital social en la propuesta de desarrollo</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>La categoría de capital social, distintas aproximaciones</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>El capital social, como recurso de los procesos de desarrollo y manejo sustentable</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>El fortalecimiento del capital social comunitario como estrategia de la intervención social</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Economía y sociedad campesinas. Marco jurídico de la tenencia de la tierra</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>La Reforma Agraria, la relación estado-sociedades campesinas, los cambios de la legislación agraria de 1991</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Lógica de reproducción de las familias y comunidades campesinas</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>El deterioro de las economías y sociedades campesinas en la segunda mitad del S. XX, impacto de estos procesos sobre los recursos naturales</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>Las sociedades y economías campesinas en el contexto de la globalización</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Las sociedades indígenas en México y sus estilos de manejo de los ecosistemas y recursos naturales</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Identidad étnica</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>El papel del territorio comunitario y la concepción de la naturaleza en la construcción de la identidad étnica</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Biodiversidad, conocimiento tradicional y derechos de propiedad (de los recursos y los conocimientos)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>El estado moderno y la cuestión ambiental</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>La conformación del territorio nacional, la urbanización y la cuestión sanitaria</td>
<td></td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.2 La naturalización de la sociedad y el fin de la naturaleza</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.3 La era de los derechos y la procedimentalización de la esfera pública</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Antecedentes del Derecho Ambiental en México</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.1 La propiedad y los recursos naturales en la Constitución de 1917</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.2 La salud pública</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.3 Tendencias en la conformación del estado post revolucionario (centralización-descentralización)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Principios e instrumentos de la legislación ambiental (1988-1996)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.1 La distribución de competencias</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.2 Principios e instrumentos de la política ambiental (evaluación del impacto ambiental, ordenamiento ecológico del territorio, autorregulación y auditorías ambientales)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Instrumentos para la restauración</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.1 La restauración de ecosistemas degradados</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.2 La restauración de suelos contaminados. Políticas generales y los casos de Tetraetilo de México y Alco Pacífico</td>
<td></td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
- Exposición oral (X)
- Exposición audiovisual (X)
- Ejercicios dentro de clase (X)
- Ejercicios fuera del aula (X)
- Seminarios (X)
- Lecturas obligatorias ()
- Trabajo de Investigación (X)
- Prácticas de taller o laboratorio (X)
- Prácticas de campo (X)
- Otros:

Mecanismos de evaluación de aprendizaje de los alumnos:
- Exámenes Parciales (X)
- Examen final escrito (X)
- Trabajos y tareas fuera del aula (X)
- Exposición de seminarios por los alumnos ()
- Participación en clase (X)
- Asistencia ()
- Seminario ()
- Otras:

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en sociedad, economía y legislación ambiental, así como tener experiencia docente.
Campo de Conocimiento: Sistemática
Denominación: BIODIVERSIDAD, TAXONOMÍA Y CONSERVACIÓN

<table>
<thead>
<tr>
<th>Carácter:</th>
<th>Optativo de elección</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clave:</td>
<td>Semestre(s): 1</td>
</tr>
<tr>
<td>Campo de Conocimiento:</td>
<td>Sistemática</td>
</tr>
<tr>
<td>No. Créditos:</td>
<td>8</td>
</tr>
<tr>
<td>Horas Teóricas:</td>
<td>4</td>
</tr>
<tr>
<td>Horas Prácticas:</td>
<td>0</td>
</tr>
<tr>
<td>Horas por semana:</td>
<td>4</td>
</tr>
<tr>
<td>Horas al Semestre:</td>
<td>64</td>
</tr>
<tr>
<td>Tipo:</td>
<td>Teórica</td>
</tr>
<tr>
<td>Modalidad:</td>
<td>Curso</td>
</tr>
<tr>
<td>Duración del programa:</td>
<td>Semestral</td>
</tr>
</tbody>
</table>

Objetivo general: Conocer los fundamentos de la taxonomía, la biodiversidad y sus implicaciones en la conservación

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas Teóricas</th>
<th>Horas Prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Biodiversidad</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Taxonomía y estudios sobre la biodiversidad</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Colecciones biológicas</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Conservación de la biodiversidad</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Total de horas:</td>
<td>64</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Biodiversidad</td>
</tr>
<tr>
<td>1.1</td>
<td>¿Qué es? Diversidad alfa, beta y gama métodos para medir la biodiversidad</td>
</tr>
<tr>
<td>1.2</td>
<td>¿Cómo está distribuida a nivel mundial? Áreas de riqueza (hot-spots). Áreas de alto endemismo. Causas de la biodiversidad, con especial referencia a México</td>
</tr>
<tr>
<td>1.3</td>
<td>Valores de la biodiversidad valores económicos (¿Cuánto vale una especie?) Servicios ambientales valores éticos y espirituales</td>
</tr>
<tr>
<td>1.4</td>
<td>Amenazas de la biodiversidad causas de la extinción. Factores de vulnerabilidad a la extinción</td>
</tr>
<tr>
<td>2</td>
<td>Taxonomía y estudios sobre la biodiversidad</td>
</tr>
<tr>
<td>2.1</td>
<td>Desarrollo histórico de la sistemática. Sistemas jerárquicos y jerarquía Linneana categorías taxonómica. Principios generales de las clasificaciones fuentes de evidencia taxonómica. La crisis de la taxonomía alfa: causas y consecuencias. La necesidad de más taxónomos</td>
</tr>
<tr>
<td>2.2</td>
<td>Productos de la taxonomía. Inventarios regionales y nacionales. ¿Qué son y para qué sirven? Estado de avance de los inventarios de flora y fauna en México. La necesidad de un Inventario Nacional de la Biodiversidad</td>
</tr>
<tr>
<td>2.3</td>
<td>Monografías taxonómicas ¿Qué son, cómo se elaboran y para qué sirven? Claves taxonómicas, y otras herramientas producto de la taxonomía</td>
</tr>
<tr>
<td>2.4</td>
<td>Códigos de Nomenclatura (Botánica y Zoológica). Nomenclatura binomial. Tipos y el principio de prioridad Sinónimos y homónimos filocódigo y biocódigo</td>
</tr>
<tr>
<td>3</td>
<td>Colecciones biológicas</td>
</tr>
<tr>
<td>3.1</td>
<td>Características básicas de las colecciones biológicas. Utilidad y necesidad de las colecciones metodologías y criterios generales para la curación de colecciones biológicas (normas mínimas y estándares de curación)</td>
</tr>
<tr>
<td>3.2</td>
<td>Catálogos y bases de datos estructuración de bases de datos Software</td>
</tr>
<tr>
<td>3.3</td>
<td>Potencial de las bases de datos para la investigación. Catálogos Análisis de la biodiversidad y patrones de endemismo</td>
</tr>
<tr>
<td>3.4</td>
<td>Análisis espacial modelos de distribución potencial</td>
</tr>
<tr>
<td>4</td>
<td>Conservación de la biodiversidad</td>
</tr>
<tr>
<td>4.1</td>
<td>¿Por qué es importante conservar la biodiversidad? Conservación a nivel de especies. Conservación ex situ (zoológicos, acuarios, jardines botánicos, bancos de germoplasma) reintroducción</td>
</tr>
<tr>
<td>4.2</td>
<td>Conservación a nivel de comunidades. Conservación in situ (áreas naturales protegidas- ANPs, estadísticas de la WCPO) Sistema de clasificación de ANPs de la IUCN</td>
</tr>
<tr>
<td>4.3</td>
<td>Criterios para la selección y diseño de ANPs. Tamaño de las ANPs (SLOSS) Los principios de complementariedad e irremplazabilidad (¿todas las especies valen lo mismo?)</td>
</tr>
<tr>
<td>4.4</td>
<td>Restauración Legislación (legislación mexicana en materia de biodiversidad, Listas Rojas, NOM-059)</td>
</tr>
</tbody>
</table>
Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Opción</th>
<th>Requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral</td>
<td>(X)</td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X)</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>()</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

<table>
<thead>
<tr>
<th>Opción</th>
<th>Requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exámenes Parciales</td>
<td>(x)</td>
</tr>
<tr>
<td>Examen final escrito</td>
<td>(x)</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
<td>(x)</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
<td>(x)</td>
</tr>
<tr>
<td>Participación en clase</td>
<td>(x)</td>
</tr>
<tr>
<td>Asistencia</td>
<td>()</td>
</tr>
<tr>
<td>Seminario</td>
<td>()</td>
</tr>
<tr>
<td>Otras:</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesoras deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biodiversidad, taxonomía y conservación, así como tener experiencia docente.
Denominación: BIOGEOGRAFÍA EVOLUTIVA
Clave: Semestre(s): Semestre(s): 1 No. Créditos: 8
Carácter: Optativo de elección Horas Horas por semana Horas al Semestre
Tipo: Teórico-Práctica Teoría: 2 Práctica: 2
Modalidad: Curso Duración del programa: 64 Semestral

Objetivo general:
Integrar los conceptos, métodos y aplicaciones básicos de la biogeografía evolutiva.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td>1.1</td>
<td>Definición de la biogeografía y su situación dentro de la biología</td>
</tr>
<tr>
<td>1.2</td>
<td>Biogeografía histórica y ecológica</td>
</tr>
<tr>
<td>1.3</td>
<td>Escalas genealógica y ecológica</td>
</tr>
<tr>
<td>1.4</td>
<td>Patrones biogeográficos: homología biogeográfica primaria y secundaria</td>
</tr>
<tr>
<td>1.5</td>
<td>Componentes bióticos y cenocrones</td>
</tr>
<tr>
<td>1.6</td>
<td>Procesos biogeográficos: vicarianza, dispersión y extinción</td>
</tr>
<tr>
<td>1.7</td>
<td>Dispersalismo, panbiogeografía, biogeografía cladística y filogeografía</td>
</tr>
<tr>
<td>1.8</td>
<td>Integración de métodos biogeográficos</td>
</tr>
<tr>
<td>2</td>
<td>Áreas de distribución y áreas de endemismo</td>
</tr>
<tr>
<td>2.1</td>
<td>Definición de áreas de distribución y métodos de inferencia</td>
</tr>
<tr>
<td>2.2</td>
<td>Definición de áreas de endemismo</td>
</tr>
<tr>
<td>2.3</td>
<td>Métodos para la identificación de áreas de endemismo: análisis de parsimonia de endemismos (PAE) y método de optimización</td>
</tr>
<tr>
<td>3</td>
<td>Identificación de componentes bióticos</td>
</tr>
<tr>
<td>3.1</td>
<td>Panbiogeografía: Croizat y la síntesis espacio-tiempo-forma</td>
</tr>
<tr>
<td>3.2</td>
<td>Recepción y evolución de las ideas de Croizat</td>
</tr>
<tr>
<td>3.3</td>
<td>Bases conceptuales</td>
</tr>
<tr>
<td>3.4</td>
<td>Trazos individuales y su orientación (líneas de base, centros de masa y orientación filogenética)</td>
</tr>
<tr>
<td>3.5</td>
<td>Trazos generalizados</td>
</tr>
<tr>
<td>3.6</td>
<td>Nodos</td>
</tr>
<tr>
<td>3.7</td>
<td>Métodos panbiogeográficos: árboles de tendido mínimo, matrices de conectividad e incidencia, compatibilidad de trazos y análisis de parsimonia de endemismos (PAE)</td>
</tr>
</tbody>
</table>
Unidad 4

<table>
<thead>
<tr>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Biogeografía cladística</td>
</tr>
<tr>
<td>4.2 Bases conceptuales</td>
</tr>
<tr>
<td>4.3 Cladogramas taxonómicos de áreas</td>
</tr>
<tr>
<td>4.4 Cladogramas resueltos de áreas: taxones distribuidos ampliamente, distribuciones redundantes y áreas ausentes. Supuestos 0, 1 y 2. Combinación de supuestos</td>
</tr>
<tr>
<td>4.5 Cladogramas generales de áreas</td>
</tr>
<tr>
<td>4.6 Métodos biogeográficos cladísticos: cladogramas de áreas reducidos, análisis de componentes, análisis de parsimonia de Brooks, análisis de árboles reconciliados, análisis de subárboles libres de paralogía y otros</td>
</tr>
<tr>
<td>4.7 Clasificación de los métodos biogeográficos cladísticos</td>
</tr>
<tr>
<td>4.8 Comparación y combinación de métodos biogeográficos cladísticos</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:

- Exposición oral: (X)
- Exposición audiovisual: (X)
- Ejercicios dentro de clase: (X)
- Seminarios: (X)
- Lecturas obligatorias: (X)
- Trabajo de Investigación: ()
- Prácticas de taller o laboratorio: (X)
- Prácticas de campo: ()
- Otros: ()

Mecanismos de evaluación de aprendizaje de los alumnos:

- Exámenes Parciales: (X)
- Examen final escrito: ()
- Trabajos y tareas fuera del aula: ()
- Exposición de seminarios por los alumnos: (X)
- Participación en clase: (X)
- Asistencia: ()
- Seminario: (X)
- Otras: ()

Perfil profesiorfiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biogeografía evolutiva, así como tener experiencia docente.
DENOMINACIÓN: BIOLOGÍA COMPARADA

Clave: Semestre(s): 1 Campo de Conocimiento: Sistemática No. Créditos: 8
Carácter: Optativo de elección Horas Horas por semana Horas al Semestre
Tipo: Teórico-Práctica Teoría: 2 Práctica: 2

Modalidad: Curso Duración del programa: Semestral

Seriación: Sin Seriación (X) Obligatoria () Indicativa ()

Objetivo general:
Conocer aplicaciones de la sistemática filogenética en diversos estudios de biología comparada.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Teóricas</td>
<td>Prácticas</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introducción</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Conceptos básicos de sistemática filogenética</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Clasificación filogenética</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Reconocimiento de especies y especiación</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Coevolución</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Adaptación</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Tiempo: Paleontología y relojes moleculares</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Tiempo: Desarrollo ontogenético</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Espacio: Biogeografía</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Conservación</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>32</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

Suma total de horas: 64

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td>1.1</td>
<td>Biología evolutiva y biología comparada</td>
</tr>
<tr>
<td>1.2</td>
<td>Taxonomía evolucionista, sistemática filogenética, taxonomía práctica, taxonomía fenética, compatibilidad de caracteres, máxima verosimilitud e inferencia bayesiana</td>
</tr>
<tr>
<td>1.3</td>
<td>Epistemología de la clasificación biológica</td>
</tr>
<tr>
<td>1.4</td>
<td>La filogenia como marco comparativo</td>
</tr>
<tr>
<td>2</td>
<td>Conceptos básicos de sistemática filogenética</td>
</tr>
<tr>
<td>2.1</td>
<td>Pasos de un estudio sistemático</td>
</tr>
<tr>
<td>2.2</td>
<td>Caracteres</td>
</tr>
<tr>
<td>2.3</td>
<td>Determinación de estados plesiomórficos y apomórficos</td>
</tr>
<tr>
<td>2.4</td>
<td>Métodos para la construcción de cladogramas</td>
</tr>
<tr>
<td>2.5</td>
<td>Estadísticos descriptivos: longitud, índice de consistencia, índice de retención e índice de consistencia rescalado</td>
</tr>
<tr>
<td>2.6</td>
<td>Criterios de optimización: optimización de Farris, Fitch, Dollo y Camin-Sokal</td>
</tr>
<tr>
<td>2.7</td>
<td>Cladogramas de consenso</td>
</tr>
<tr>
<td>2.8</td>
<td>Cladogramas y confianza: "bootstrapping", "jackknife", pruebas de permutación y soporte de ramas</td>
</tr>
<tr>
<td>2.9</td>
<td>Análisis epistemomológico del método cladístico</td>
</tr>
<tr>
<td>3</td>
<td>Clasificación filogenética</td>
</tr>
<tr>
<td>3.1</td>
<td>La jerarquía linneana</td>
</tr>
<tr>
<td>3.2</td>
<td>Alternativas a la jerarquía linneana</td>
</tr>
<tr>
<td>3.3</td>
<td>Subordinación y secuenciación, sedis mutabilis e incertae sedis</td>
</tr>
<tr>
<td>3.4</td>
<td>Tratamiento de taxones fósiles</td>
</tr>
<tr>
<td>3.5</td>
<td>Tratamiento de especies de origen híbrido</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| 4 | Reconocimiento de especies y especiación
| | 4.1 Reconocimiento y evaluación de especies mediante análisis filogenéticos
| | 4.2 Especies crípticas en la naturaleza y sus implicaciones
| | 4.3 Conceptos de especie
| | 4.4 Modelos de especiación: alopátrida, peripátrida, parapátrida, alopapátrida y simpátrida |
| 5 | Coevolución
| | 5.1 Modelos generales de coevolución
| | 5.2 Contexto filogenético de la coevolución: coespeciación y coadaptación
| | 5.3 Coespeciación. Análisis de parsimonia de Brooks y árboles reconciliados
| | 5.4 Coadaptación: coevolución alopátrida, colonización y exclusión
| | 5.5 Coevolución en la perspectiva geológico-paleontológica y su influencia en la evolución biótica |
| 6 | Adaptaación
| | 6.1 Críticas al programa adaptacionista
| | 6.2 Origen de caracteres adaptativos
| | 6.3 Optimización de caracteres binarios y multiestado
| | 6.4 Contrastación de hipótesis adaptacionistas
| | 6.5 Diversificación adaptativa
| | 6.6 Convergencia adaptativa
| | 6.7 Constreñimientos filogenéticos
| | 6.8 Facilitación evolutiva
| | 6.9 Diversificación ecológica
| | 6.10 El establecimiento de grandes patrones estructurales (“bauplans”) |
| 7 | Tiempo: Paleontología y relojes moleculares
| | 7.1 La importancia de los fósiles
| | 7.2 Fósiles y ancestros
| | 7.3 Grupos tronco y corona
| | 7.4 Ajuste estratigráfico
| | 7.5 Interpretación actualista y filogenética del registro fósil
| | 7.6 Tasas de originación y de extinción
| | 7.7 Reemplazo biótico
| | 7.8 Estimación de tiempos de divergencia: relojes moleculares, “relojes relajados” (verosimilitud penalizada y filogenética relajada) y estimación de tasas de diversificación |
| 8 | Tiempo: Desarrollo ontogenético
| | 8.1 Constreñimientos del desarrollo
| | 8.2 Heterocronía |
| 9 | Espacio: Biogeografía
| | 9.1 Hechos biogeográficos y alternativas de explicación causal: Enfoques ecológico e histórico-evolutivo
| | 9.2 Homología biogeográfica primaria y secundaria
| | 9.3 Componentes bióticos y cenocrones
| | 9.4 Biogeografía cladística
| | 9.5 Cladogramas taxonómicos de áreas
| | 9.6 Cladogramas resueltos de áreas: taxones distribuidos ampliamente, distribuciones redundantes, áreas faltantes
| | 9.7 Cladogramas generales de áreas: análisis de los componentes y análisis de parsimonia
| | 9.8 Evaluación de cladogramas generales de áreas
| | 9.9 Filogeografía intraespecífica y comparada |
| 10 | Conservación
| | 10.1 La crisis de la biodiversidad
| | 10.2 Especies y Unidades Evolutivas Significativas
| | 10.3 Biogeografía de la conservación
| | 10.4 Índices de peso taxonómico
| | 10.5 Índices de divergencia taxonómica
| | 10.6 Dispersión taxonómica
| | 10.7 Complementariedad |

Bibliografía Básica:
Bibliografía Complementaria:

<table>
<thead>
<tr>
<th>Sugerencias didácticas:</th>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral</td>
<td>Exámenes Parciales</td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td>Examen final escrito</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>Trabajos y tareas fuera del aula</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>Exposición de seminarios por los alumnos</td>
</tr>
<tr>
<td>Seminarios</td>
<td>Participación en clase</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>Asistencia</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>Seminario</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>Otras:</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td></td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biología comparada, así como tener experiencia docente.
Denominación: EVOLUCIÓN
Clave: Semestre(s): 1
Campo de Conocimiento: Biología Evolutiva, Sistemática
No. Créditos: 8
Carácter: Optativa de elección
Tipo: Teórica
Horas por semana: 4
Horas al Semestre: 64
Modalidad: Curso
Duración del programa: Semestral
Seriation: Sin Seriación (X)
Objetivo general: Que los alumnos estén realmente familiarizados con los aspectos fundamentales del proceso evolutivo que les permita adentrarse posteriormente en aspectos más sofisticados y experimentales de la biología evolutiva en sus diferentes facetas.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
</table>
| 1 | Introducción: ¿Qué es la biología evolutiva?
1.1 Diversidad y adaptación
1.2 Microevolución y macroevolución
1.3 Un poco de Historia |
| 2 | Las poblaciones en equilibrio
2.1 La Variación en las poblaciones naturales
2.2 Algunos conceptos de genética fundamentales
2.3 Introducción a la Genética de Poblaciones
2.4 La ley del equilibrio de Hardy-Weinberg |
| 3 | Los procesos evolutivos en las poblaciones
3.1 La selección natural
3.2 La deriva Génica
3.3 El flujo génico
3.4 Mutación
3.5 Endogamia/sistemas reproductivos |
| 4 | Evolución fenotípica
4.1 Genética cuantitativa, mapeo de caracteres y desequilibrio de ligamiento
4.2 La heredabilidad y la respuesta a la selección
4.3 Selección en poblaciones naturales
4.4 Selección Sexual y fenómenos relacionados |
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Adaptación</td>
</tr>
<tr>
<td></td>
<td>5.1 El modelo del “Shifting balance” de Wright</td>
</tr>
<tr>
<td></td>
<td>5.2 Selección y adaptación</td>
</tr>
<tr>
<td></td>
<td>5.3 El “programa adaptacionista”</td>
</tr>
<tr>
<td></td>
<td>5.4 Niveles de selección</td>
</tr>
<tr>
<td>6</td>
<td>Especiación</td>
</tr>
<tr>
<td></td>
<td>6.1 Conceptos de especie</td>
</tr>
<tr>
<td></td>
<td>6.2 Aspectos genéticos y ecológicos de la especiación</td>
</tr>
<tr>
<td></td>
<td>6.3 Mecanismos y barreras al flujo génico</td>
</tr>
<tr>
<td></td>
<td>6.4 Modelo alopático de especiación</td>
</tr>
<tr>
<td></td>
<td>6.5 Modelo simpático de especiación</td>
</tr>
<tr>
<td></td>
<td>6.6 Otros modelos e hibridación</td>
</tr>
<tr>
<td>7</td>
<td>Introducción a la evolución molecular</td>
</tr>
<tr>
<td></td>
<td>7.1 La teoría Neutra de Kimura</td>
</tr>
<tr>
<td></td>
<td>7.2 Tasas de sustitución y relojes moleculares</td>
</tr>
<tr>
<td></td>
<td>7.3 Reconstrucción filogenética</td>
</tr>
<tr>
<td>8</td>
<td>Macroevolución</td>
</tr>
<tr>
<td></td>
<td>8.1 Especiación vs. extinción</td>
</tr>
<tr>
<td></td>
<td>8.2 Ontogenia y filogenia</td>
</tr>
<tr>
<td></td>
<td>8.3 Tasas de evolución morfológicas</td>
</tr>
<tr>
<td></td>
<td>8.4 Gradualismo vs. saltacionismo</td>
</tr>
<tr>
<td>9</td>
<td>Polémicas en evolución</td>
</tr>
<tr>
<td></td>
<td>9.1 Evolución del Desarrollo</td>
</tr>
<tr>
<td></td>
<td>9.2 Epigenética</td>
</tr>
<tr>
<td></td>
<td>9.3 Simbiogénesis</td>
</tr>
<tr>
<td></td>
<td>9.4 Diseño inteligente, mutación dirigida y otras discusiones populares</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Exposición oral</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición audiovisual</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>()</td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X)</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>()</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>()</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

Exámenes Parciales	(X)
Examen final escrito	()
Trabajos y tareas fuera del aula	(X)
Exposición de seminarios por los alumnos	(X)
Participación en clase	(X)
Asistencia	()
Seminario	(X)
Otras:	

Perfil profesiográfico:

El profesor o profesoras deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en evolución, así como tener experiencia docente.
Denominación: **FILOGEOGRAFÍA**

<table>
<thead>
<tr>
<th>Carácter: Optativo de elección</th>
<th>Horas por semana</th>
<th>Horas al Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo: Teórica</td>
<td>Teoría: 4</td>
<td>Práctica: 0</td>
</tr>
<tr>
<td>Horas:</td>
<td>4</td>
<td>64</td>
</tr>
</tbody>
</table>

Modalidad: Curso
Duración del programa: Semestral

Seriación: Sin Seriación (X)
Obligatoria (): Indicativa ()

Objetivo general:

Realizar en su proyecto de investigación métodos de análisis genético-poblacionales y filogenéticos y su aplicación en filogeografía, así como probar hipótesis relacionadas con la historia evolutiva de las especies.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción Ecología molecular</td>
</tr>
<tr>
<td></td>
<td>1. Historia, bases y conceptos generales</td>
</tr>
<tr>
<td></td>
<td>1.2. Relación con otras áreas (biogeografía, paleobiología, sistemática, conservación)</td>
</tr>
<tr>
<td></td>
<td>1.3. Herramientas moleculares</td>
</tr>
<tr>
<td></td>
<td>1.4. Bases metodológicas en filogenia y genética de poblaciones</td>
</tr>
<tr>
<td>2</td>
<td>Principios de coalescencia</td>
</tr>
<tr>
<td></td>
<td>2.1. Estructura espacial de las poblaciones</td>
</tr>
<tr>
<td></td>
<td>2.2. Matrílnneas poblacionales</td>
</tr>
<tr>
<td></td>
<td>2.3. Coalescencia y ramificación</td>
</tr>
<tr>
<td></td>
<td>2.4. Genealogías y geografía</td>
</tr>
<tr>
<td>3</td>
<td>Métodos de análisis</td>
</tr>
<tr>
<td></td>
<td>3.1. Métodos filogenéticos</td>
</tr>
<tr>
<td></td>
<td>3.2. Métodos genético-poblacionales y espaciales</td>
</tr>
<tr>
<td></td>
<td>3.3. Computaciones bayesianas aproximadas y skyline plots</td>
</tr>
<tr>
<td></td>
<td>3.4. Estadística filogeográfica</td>
</tr>
<tr>
<td>4</td>
<td>Ejemplos y estudios de caso</td>
</tr>
<tr>
<td></td>
<td>4.1. Estructura filogeográfica</td>
</tr>
<tr>
<td></td>
<td>4.2. Inferencias demográficas</td>
</tr>
<tr>
<td></td>
<td>4.3. Filogeografía comparada</td>
</tr>
<tr>
<td></td>
<td>4.4. Estadística filogeográfica II</td>
</tr>
<tr>
<td>5</td>
<td>Aplicaciones y extensiones de la filogeografía</td>
</tr>
<tr>
<td></td>
<td>5.1. Sistemática</td>
</tr>
<tr>
<td></td>
<td>5.2. Adaptación y especiación</td>
</tr>
<tr>
<td></td>
<td>5.3. Conservación</td>
</tr>
<tr>
<td></td>
<td>5.4. Genética del paisaje y nicho ecológico</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:
- Exposición oral (x)
- Exposición audiovisual (x)
- Ejercicios dentro de clase ()
- Ejercicios fuera del aula ()
- Seminarios (x)
- Lecturas obligatorias (x)
- Trabajo de Investigación (x)
- Prácticas de taller o laboratorio ()
- Prácticas de campo ()
- Otros: ()

Mecanismos de evaluación de aprendizaje de los alumnos:
- Exámenes Parciales (x)
- Examen final escrito ()
- Trabajos y tareas fuera del aula (x)
- Exposición de seminarios por los alumnos (x)
- Participación en clase ()
- Asistencia (x)
- Seminario ()
- Otras: Trabajo final ()

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en filogeografía, así como tener experiencia docente.
Denominación: METODO COMPARATIVO

Clave: Semestre(s): 1
Campo de Conocimiento: Biología Evolutiva, Sistemática
No. Créditos: 8

Carácter: Optativo de elección

Tipo: Teórico-Práctica

Horas

Teoría: 2
Práctica: 2

Horas por semana: 4
Horas al Semestre: 64

Modalidad: Curso
Duración del programa: Semestral

Seriación: Sin Seriación (X) Obligatoria () Indicativa ()

Objetivo general:
El curso tiene como objetivo brindar las bases para que los alumnos interpretan patrones filogenéticos en un contexto moderno, con énfasis en los hallazgos y avances conceptuales que han cuestionado cada punto de la Síntesis Moderna.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
<th>Teóricas</th>
<th>Prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Superando la síntesis moderna</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Macroevolución</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Homología: la base de la biología comparativa</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Adaptación y el método comparativo</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Acabando con la síntesis: la evolución</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>32</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Suma total de horas:</td>
<td></td>
<td></td>
<td>64</td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Superando la síntesis moderna</td>
</tr>
<tr>
<td>1.1</td>
<td>Introducción. Estructura y planteamiento del curso. Repaso de ideas clave de la sistemática filogenética. La generación de preguntas de interés general, el planteamiento de hipótesis y cómo someterlas a prueba con objetivos y metas claros. El cuadro de la Síntesis Moderna y la biología evolutiva actual</td>
</tr>
<tr>
<td>1.2</td>
<td>Posiciones conceptuales. Conceptos de los taxones mayores; taxonomía vs. sistemática; taxonomía evolutiva, fenética, cladismo; ¿qué representan los árboles filogenéticos?; esencialismo, tipología y sesgos cognitivos</td>
</tr>
<tr>
<td>1.3</td>
<td>Conceptos de especie. ¿Cuáles son algunas de las ideas del estatus de especies como individuos? Esta sección no se trata de una revisión comprehensiva de los conceptos de especie sino que sirve para contrastar ideas sobre la “individualidad” de las especies. El debate sobre la naturaleza ontológica de las especies sigue, pero como veremos más adelante, si es posible considerarlas como individuos, las implicaciones para el estudio de macroevolución son muy extensas</td>
</tr>
<tr>
<td>1.4</td>
<td>El Darwinismo de la Síntesis Moderna. Las modificaciones a la teoría evolutiva que veremos en el resto del curso son en gran parte una reacción a las carencias del cuadro presentado en la Síntesis Moderna.</td>
</tr>
<tr>
<td>1.5</td>
<td>Trabajo sobre el primer borrador del escrito semestral (resúmenes de los proyectos de tesis) y preparación para el examen</td>
</tr>
<tr>
<td>1.6</td>
<td>Primer examen parcial</td>
</tr>
<tr>
<td>2</td>
<td>Macroevolución</td>
</tr>
<tr>
<td>2.1</td>
<td>¿Cuál es el nivel en donde opera la selección natural? ¿Qué es un “individuo” en términos evolutivos? Interactores, replicadores, vehículos, etc.</td>
</tr>
<tr>
<td>2.2</td>
<td>Macroevolución y propiedades emergentes por encima del nivel de la especie</td>
</tr>
<tr>
<td>2.3</td>
<td>Reducccionismo gen-céntrico vs. interaccionismo y emergencia: Gould y Dawkins ya no parecen tan distintos...(teoría de los sistemas del desarrollo y la herencia extendida)</td>
</tr>
<tr>
<td>2.4</td>
<td>Estructura jerárquica de la historia biológica</td>
</tr>
<tr>
<td>2.5</td>
<td>Equilibrios puntuados: patrón vs proceso; adaptacionismo vs. “sorteo” y selección de especies</td>
</tr>
<tr>
<td>Unidad</td>
<td>Tema y Subtemas</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>3</td>
<td>Homología: la base de la biología comparativa</td>
</tr>
<tr>
<td></td>
<td>3.1 Homología vs. tipología: homología táctica vs. transformacional</td>
</tr>
<tr>
<td></td>
<td>3.2 Las "bases biológicas" de homología. ¿Por qué la homología?</td>
</tr>
<tr>
<td></td>
<td>3.3 Congruencia y similitud</td>
</tr>
<tr>
<td></td>
<td>3.4 Modularidad. Importancia y causas</td>
</tr>
<tr>
<td></td>
<td>3.5 La otra cara de la homología. Disyuntivas en la asignación de recursos (tradeoffs) y restricciones ontogenética</td>
</tr>
<tr>
<td></td>
<td>3.6 Entrega del segundo examen parcial</td>
</tr>
<tr>
<td>4</td>
<td>Adaptación y el método comparativo</td>
</tr>
<tr>
<td></td>
<td>4.1 Adaptación por selección natural: argumentos tradicionales (convergencia y optimalidad)</td>
</tr>
<tr>
<td></td>
<td>4.2 Adaptación por selección natural: críticas clásicas</td>
</tr>
<tr>
<td></td>
<td>4.3 El argumento a partir de convergencia en su forma moderna: el método comparativo filogenético</td>
</tr>
<tr>
<td></td>
<td>4.4 El método comparativo filogenético, otras técnicas</td>
</tr>
<tr>
<td></td>
<td>4.5 ¿Cómo medir la diversidad? ¿De dónde viene? Escenarios simplistas vs. complejidad histórica.</td>
</tr>
<tr>
<td>5</td>
<td>Acabando con la síntesis: la evolución</td>
</tr>
<tr>
<td></td>
<td>5.1 Inducción, deducción o abducción: ¿Cuál es la estructura inferencial de la biología evolutiva? Clase impartido por el Dr. Alfonso Arroyo Santos.</td>
</tr>
<tr>
<td></td>
<td>5.2 Invirtiendo la Síntesis Moderna (o: Ontogenia y evolución post-Síntesis: ¿Dónde han estado toda mi vida?)</td>
</tr>
<tr>
<td></td>
<td>5.3 Propiedades emergentes de sistemas complejos.</td>
</tr>
<tr>
<td></td>
<td>5.4 Paralelismo, homología y la adaptación; Evo-devo y homología</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Exposición oral</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición audiovisual</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X)</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>(X)</td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

<table>
<thead>
<tr>
<th>Exámenes Parciales</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examen final escrito</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
<td>(X)</td>
</tr>
<tr>
<td>Participación en clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Asistencia</td>
<td>()</td>
</tr>
<tr>
<td>Seminario</td>
<td>()</td>
</tr>
<tr>
<td>Otras: Ensayo</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en método comparativo, así como tener experiencia docente.
Denominación: MÉTODOS DE RECONSTRUCCIÓN FILOGENÉTICA
Clave: Semestre(s): 1
Campo de Conocimiento: Biología Evolutiva, Sistemática
No. Créditos: 8

<table>
<thead>
<tr>
<th>Carácter: Optativo de elección</th>
<th>Horas por semana</th>
<th>Horas al Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo: Teórico-Práctica</td>
<td>Teoría: 2</td>
<td>Práctica: 2</td>
</tr>
<tr>
<td>Modalidad: Curso</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Duración del programa: Semestral</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seriación: Sin Seriación (X)
**Obligatoria ()
**Indicativa ()

Objetivo general: Que el alumno comprenda los fundamentos teóricos de las escuelas de sistemática filogenética y sea capaz de formular e interpretar hipótesis de relaciones filogenéticas y evolutivas entre taxones, empleando para ello los principales programas de cómputo. Que el alumno conozca los principales métodos de reconstrucción filogenética empleados en la actualidad, así como la relevancia del enfoque filogenético para la sistemática y otras disciplinas biológicas.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
</tr>
<tr>
<td>1.1</td>
<td>Sistemática y Taxonomía: conceptos generales; la sistemática como disciplina en la Biología</td>
</tr>
<tr>
<td>1.2</td>
<td>Historia de la Sistemática: breve historia de las clasificaciones biológicas</td>
</tr>
<tr>
<td>1.3</td>
<td>Filosofías en la reconstrucción filogenética: Evolucionismo, Feneticismo, Cladismo y Uso de Modelos Evolutivos</td>
</tr>
<tr>
<td>2</td>
<td>Conceptos de especie y modelos de especiación</td>
</tr>
<tr>
<td>2.1</td>
<td>Nominalismo vs. realismo</td>
</tr>
<tr>
<td>2.2</td>
<td>Conceptos de especie (tipológico, paleontológico, biológico, evolutivo, filogenético, entre otros)</td>
</tr>
<tr>
<td>2.3</td>
<td>Anagénesis y cladogénesis</td>
</tr>
<tr>
<td>2.4</td>
<td>Modelos de especiación: alopatría, simpatria, parapatria, peripatria</td>
</tr>
<tr>
<td>3</td>
<td>Taxones supraespecíficos</td>
</tr>
<tr>
<td>3.1</td>
<td>Conceptos</td>
</tr>
<tr>
<td>3.2</td>
<td>Grupos monofiléticos, parafiléticos y polifiléticos</td>
</tr>
<tr>
<td>4</td>
<td>Homología</td>
</tr>
<tr>
<td>4.1</td>
<td>Definición de homología</td>
</tr>
<tr>
<td>4.2</td>
<td>Establecimiento de hipótesis de homología primaria (reglas para su postulación: conjunción, similitud y congruencia)</td>
</tr>
<tr>
<td>4.3</td>
<td>Homología secundaria</td>
</tr>
<tr>
<td>4.4</td>
<td>Tipos de homología: apomorfías (autapomorfía, sinapomorfía), plesiomorfías (simplesiomorfía).</td>
</tr>
<tr>
<td>4.5</td>
<td>Homoplasia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Conceptos de especie y modelos de especiación</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Taxones supraespecíficos</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Homología</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Caracteres</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Unidades terminales y taxones</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Método de parsimonia</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>Métodos de distancia</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Métodos probabilísticos basados en modelos</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>Aplicaciones de las hipótesis filogenéticas</td>
<td>5</td>
</tr>
</tbody>
</table>

Total de horas: 32
Suma total de horas: 64
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Caracteres
5.1 Caracteres, estados de carácter; series de transformación y polaridad
5.2 Tipos de caracteres organismicos (continuos, discretos; binarios, multiestado; morfológicos, ecológicos, etológicos)
5.3 Caracteres moleculares. Alineamiento de secuencias de ADN
5.4 Ventajas y desventajas de los diferentes tipos de caracteres</td>
</tr>
<tr>
<td>6</td>
<td>Unidades terminales y taxones
6.1 Muestreo de terminales (individuos, poblaciones, especies, taxones supraespecíficos, genes, etc.).
6.2 Muestreo de taxones: Grupo interno y externo
6.3 Análisis de datos por separado vs. análisis simultáneos
6.4 Problema de datos faltantes</td>
</tr>
<tr>
<td>7</td>
<td>Método de parsimonia
7.1 Conceptos generales
7.2 Argumentación Hennigiana
7.3 Optimización de caracteres: Wagner, Fitch, Dollo, Sankoff
7.4 Estadísticas de los árboles (longitud, índices de consistencia, retención y re-escalado)
7.5 Tipos de búsqueda exhaustivas y exactas (enumeración implícita, branch & amp; bound)
7.6 Búsquedas heurísticas (NNI, SPR, TBR, parsimonia de matraca y nueva tecnología)
7.7 Medidas de apoyo de las ramas (bootstrap, Jackknife, soporte de Bremer)
7.8 Árboles de consenso y compromiso
7.9 Ventajas y desventajas del método de parsimonia</td>
</tr>
<tr>
<td>8</td>
<td>Métodos de distancia
8.1 Conceptos generales
8.2 Métodos de distancia (NJ, UPGMA)</td>
</tr>
<tr>
<td>9</td>
<td>Métodos probabilísticos basados en modelos
9.1 Conceptos generales
9.2 Uso de modelos de evolución: Pruebas de saturación, selección de modelos (Modeltest), parámetros, análisis con particiones y selección de estrategias de partición de datos
9.3 Criterios de optimización: máxima verosimilitud e inferencia Bayesiana
9.4 Inferencia Bayesiana: número de generaciones en un análisis, muestreo de árboles de la distribución posterior (método MCMC), determinación del 'burn-in'
9.5 Resumiendo la distribución posterior: probabilidades Bayesinas posteriores
9.6 Ventajas y desventajas de los métodos probabilísticos</td>
</tr>
<tr>
<td>10</td>
<td>Aplicaciones de las hipótesis filogenéticas
10.1 Fechamiento de clados, reconstrucción de caracteres ancestrales
10.2 Clasificaciones taxonómicas y nomenclatura
10.3 Adaptación, exaptación y coevolución
10.4 Biogeografía
10.5 Diversidad y conservación</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

Bibliografía Complementaria:
Sugerencias didácticas:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral</td>
<td>(X)</td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td></td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X)</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajo de investigación</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td></td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exámenes Parciales</td>
<td>(X)</td>
</tr>
<tr>
<td>Examen final escrito</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
<td>(X)</td>
</tr>
<tr>
<td>Participación en clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Asistencia</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminario</td>
<td>(X)</td>
</tr>
<tr>
<td>Otras:</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesoras deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en métodos de reconstrucción filogenética, así como tener experiencia docente.
Denominación: SISTEMÁTICA MOLECULAR
Clave: Semestre(s): 1
Campo de Conocimiento: Sistemática
No. Créditos: 8
Carácter: Optativo de elección
Tipo: Teórico-Práctica
Modalidad: Curso
Horas por semana: Teoría: 2
Horas al Semestre: Práctica: 2
Duración del programa: Semestral

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
<th>Teóricas</th>
<th>Prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Los datos moleculares</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Alineación de secuencias y bases de datos</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Parsimonia</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modelos de sustitución</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Métodos de distancia</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Máxima verosimilitud</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Árboles de consenso y apoyo de ramas</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Inferencia Bayesiana</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Relojes moleculares</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Pruebas de topologías de árboles</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suma total de horas:</td>
<td>64</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objetivo general: Que el alumno comprenda las bases conceptuales y metodológicas para la elaboración de hipótesis de relaciones filogenéticas con base en secuencias moleculares.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
</table>
| 1 | Los datos moleculares
| | 1.1 La estructura y composición de DNA, RNA y proteínas
| | 1.2 La estructura de los genomas
| | 1.3 Mutación
| | 1.4 Variación en poblaciones
| | 1.5 Variación entre especies
| 2 | Alineación de secuencias y bases de datos
| | 2.1 Alineación pairwise
| | 2.1.1 Dot matrix
| | 2.2 Alineación de secuencias múltiples
| | 2.2.1 Weighted sums
| | 2.2.2 Alineación progresiva
| | 2.2.3 Alineación iterativa
| | 2.2.4 Algoritmos genéticos
| | 2.3 Bases de datos públicos
| | 2.3.1 GenBank, EMBL y DDBJ
| | 2.3.2 BLAST

Contenido Temático
<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Parsimonia</td>
</tr>
<tr>
<td></td>
<td>3.1 Principios y definiciones</td>
</tr>
<tr>
<td></td>
<td>3.1.1 La navaja de Ockam</td>
</tr>
<tr>
<td></td>
<td>3.1.2 Willi Hennig y los principios de la sistemática filogenética</td>
</tr>
<tr>
<td></td>
<td>3.2 Optimización de Farris, Fitch, Dollo y de Camin y Sokal</td>
</tr>
<tr>
<td></td>
<td>3.3 Algoritmos</td>
</tr>
<tr>
<td></td>
<td>3.3.1 Algoritmo de Fitch</td>
</tr>
<tr>
<td></td>
<td>3.3.2 Algoritmo de Sankoff</td>
</tr>
<tr>
<td></td>
<td>3.4 Búsquedas</td>
</tr>
<tr>
<td></td>
<td>3.4.1 Búsquedas heurísticas</td>
</tr>
<tr>
<td></td>
<td>3.4.1.1 Adición secuencial</td>
</tr>
<tr>
<td></td>
<td>3.4.1.2 Intercambio de Ramas</td>
</tr>
<tr>
<td></td>
<td>3.4.1.3 Otros métodos (matraca, simulated annealing, tree drifting, etc.)</td>
</tr>
<tr>
<td></td>
<td>3.4.2 Búsquedas exactas</td>
</tr>
<tr>
<td></td>
<td>3.5 Compatibilidad</td>
</tr>
<tr>
<td></td>
<td>3.6 Propiedades estadísticas de parsimonia</td>
</tr>
<tr>
<td>4</td>
<td>Modelos de sustitución</td>
</tr>
<tr>
<td></td>
<td>4.1 Principios y definiciones</td>
</tr>
<tr>
<td></td>
<td>4.2 los modelos Jukes-Cantor, Kimura81, Felsenstein81, HKY85 y GTR</td>
</tr>
<tr>
<td></td>
<td>4.3 Matrices Q, R y P</td>
</tr>
<tr>
<td></td>
<td>4.4 Modelos de sustitución para aminoácidos y codones</td>
</tr>
<tr>
<td></td>
<td>4.5 Modelos para caracteres morfológicos</td>
</tr>
<tr>
<td>5</td>
<td>Métodos de distancia</td>
</tr>
<tr>
<td></td>
<td>5.1 Principios y definiciones</td>
</tr>
<tr>
<td></td>
<td>5.2 UPGMA</td>
</tr>
<tr>
<td></td>
<td>5.3 Mínimos cuadrados</td>
</tr>
<tr>
<td></td>
<td>5.4 Mínima Evolución</td>
</tr>
<tr>
<td></td>
<td>5.5 Neighbor-joining</td>
</tr>
<tr>
<td></td>
<td>5.6 Otros métodos (BIONJ, Distancias de Wagner, Quartets) Jukes-Cantor</td>
</tr>
<tr>
<td>6</td>
<td>Máxima verosimilitud</td>
</tr>
<tr>
<td></td>
<td>6.1 Principios y definiciones</td>
</tr>
<tr>
<td></td>
<td>6.2 Similitudes y diferencia con parsimonia</td>
</tr>
<tr>
<td></td>
<td>6.3 Verosimilitud como logaritmo natural</td>
</tr>
<tr>
<td></td>
<td>6.4 Cálculo de la verosimilitud de un árbol</td>
</tr>
<tr>
<td></td>
<td>6.5 Método exhaustivo y algoritmo de “poda”</td>
</tr>
<tr>
<td></td>
<td>6.6 Encontrar al árbol de máxima verosimilitud</td>
</tr>
<tr>
<td></td>
<td>6.7 Método exhaustivo</td>
</tr>
<tr>
<td></td>
<td>6.8 Estrategias empíricas</td>
</tr>
<tr>
<td>7</td>
<td>Árboles de consenso y apoyo de ramas</td>
</tr>
<tr>
<td></td>
<td>7.1 Árbol de mayoría, de consenso y otros</td>
</tr>
<tr>
<td></td>
<td>7.2 Bootstrap</td>
</tr>
<tr>
<td></td>
<td>7.3 Jackknife</td>
</tr>
<tr>
<td></td>
<td>7.4 Índice de Bremer</td>
</tr>
<tr>
<td></td>
<td>7.5 Bootstrap paramétrico</td>
</tr>
<tr>
<td>8</td>
<td>Inferencia Bayesiana</td>
</tr>
<tr>
<td></td>
<td>8.1 Principios y definición</td>
</tr>
<tr>
<td></td>
<td>8.2 Relación con máxima verosimilitud</td>
</tr>
<tr>
<td></td>
<td>8.3 Probabilidades previas y posteriores cadenas de Markov</td>
</tr>
<tr>
<td></td>
<td>8.4 Modelos particionados</td>
</tr>
<tr>
<td>9</td>
<td>Relojes moleculares</td>
</tr>
<tr>
<td></td>
<td>9.1 Constancia de tasas de sustitución</td>
</tr>
<tr>
<td></td>
<td>9.2 árboles linearizados</td>
</tr>
<tr>
<td></td>
<td>9.3 relojes locales</td>
</tr>
<tr>
<td></td>
<td>9.4 relojes relajados</td>
</tr>
<tr>
<td></td>
<td>9.5 Autocorrelación de tasas de sustitución</td>
</tr>
<tr>
<td>10</td>
<td>Pruebas de topologías de árboles</td>
</tr>
<tr>
<td></td>
<td>10.1 Prueba de Templeton</td>
</tr>
<tr>
<td></td>
<td>10.2 Prueba de Kishino-Hasegawa</td>
</tr>
<tr>
<td></td>
<td>10.3 Prueba de Shimodaira-Hasegawa</td>
</tr>
<tr>
<td></td>
<td>10.4 Prueba de SOWH</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

<table>
<thead>
<tr>
<th>Bibliografía Complementaria:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sugerencias didácticas:</th>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral</td>
<td>() Exámenes Parciales (X)</td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td>(X) Examen final escrito ()</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(X) Trabajos y tareas fuera del aula ()</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>(X) Exposición de seminarios por los alumnos (X)</td>
</tr>
<tr>
<td>Seminarios</td>
<td>() Participación en clase (X)</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>() Asistencia (X)</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>() Seminario ()</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>(X) Otras:</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
<tr>
<td>Otros:</td>
<td>()</td>
</tr>
</tbody>
</table>

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en sistemática molecular, así como tener experiencia docente.
Optativas
Campo de Conocimiento: Biología Evolutiva
Denominación: TEMAS SELECTOS-ESTANCIA DE INVESTIGACIÓN

Clave: Semestre(s): 2
Campo de Conocimiento: Biología Evolutiva
No. Créditos: 8

<table>
<thead>
<tr>
<th>Carácter:</th>
<th>Optativo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horas</td>
<td>Horas por semana</td>
</tr>
<tr>
<td>Tipo:</td>
<td>Teórico-Práctica</td>
</tr>
<tr>
<td>Modalidad:</td>
<td>Tutoría</td>
</tr>
</tbody>
</table>

Seriación: Sin Seriación (X)
**Obligatoria ()
**Indicativa ()

Objetivo general: Fortalecer y profundizar en el tema que el alumno esté desarrollando en su investigación, si así lo requiere. El Comité Académico será el que autorice la realización de esta actividad académica, previa recomendación del comité tutor.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Teóricas</td>
</tr>
</tbody>
</table>

El alumno realizará labores de investigación de biología evolutiva en otra institución, o en el tema que esté desarrollando en su investigación.

Total de horas: 32
Suma total de horas: 64

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El alumno realizará labores de investigación de biología evolutiva en otra institución, o en el tema que esté desarrollando en su investigación.</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

La bibliografía se definirá dependiendo del tema de investigación del alumno.

Bibliografía Complementaria:

La bibliografía se definirá dependiendo del tema de investigación del alumno.

Sugerencias didácticas:

Exposición oral	Examen final escrito
Exposición audiovisual	Trabajos y tareas fuera del aula
Ejercicios dentro de clase	Exposición de seminarios por los alumnos
Ejercicios fuera del aula	Participación en clase
Seminarios	Asistencia
Lecturas obligatorias	Seminario
Trabajo de Investigación	Otras:
Prácticas de taller o laboratorio	Nota: El investigador anfitrión evaluará el desempeño del alumno durante su estancia.
Prácticas de campo	
Otros:	

Mecanismos de evaluación de aprendizaje de los alumnos:

Exámenes Parciales	(X)
Examen final escrito	(X)
Trabajos y tareas fuera del aula	(X)
Exposición de seminarios por los alumnos	(X)
Participación en clase	(X)
Asistencia	(X)
Seminario	(X)

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biología evolutiva, así como tener experiencia docente.
Denominación: TEMAS SELECTOS DE BIOLOGÍA EVOLUTIVA

Clave: Semestre(s): 1, 2 o 3
Campo de Conocimiento: Biología Evolutiva
No. Créditos: 8

<table>
<thead>
<tr>
<th>Carácter: Optativo</th>
<th>Horas</th>
<th>Horas por semana</th>
<th>Horas al Semestre</th>
</tr>
</thead>
</table>
| **Tipo:** Teórica | Teoría: 4
Práctica: 0 | 4 | 64 |

<table>
<thead>
<tr>
<th>Modalidad: Curso</th>
<th>Duración del programa: Semestral</th>
</tr>
</thead>
</table>

Seriación: Sin Seriación (X)
Obligatoria ()
Indicativa ()

Objetivo general:
El alumno conocerá los temas emergentes, de frontera, complementarios, de interés formativo y de actualidad de la biología evolutiva que el Comité Académico considere importantes para la formación académica de los alumnos.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El contenido temático se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total de horas: 64</td>
</tr>
<tr>
<td></td>
<td>Suma total de horas: 64</td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El contenido temático se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

La bibliografía se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.

Bibliografía Complementaria:

La bibliografía se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Exposición oral</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición audiovisual</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>()</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>()</td>
</tr>
<tr>
<td>Seminarios</td>
<td>()</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>()</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exámenes Parciales: (X)</td>
</tr>
<tr>
<td>Examen final escrito: (X)</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula: (X)</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos: (X)</td>
</tr>
<tr>
<td>Participación en clase: (X)</td>
</tr>
<tr>
<td>Asistencia: (X)</td>
</tr>
<tr>
<td>Seminario: ()</td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesoras deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biología evolutiva, así como tener experiencia docente.
Campo de Conocimiento: Biología Experimental
Denominación: TEMAS SELECTOS-ESTANCIA DE INVESTIGACIÓN

<table>
<thead>
<tr>
<th>Clave:</th>
<th>Semestre(s): 2</th>
<th>Campo de Conocimiento: Biología Experimental</th>
<th>No. Créditos: 8</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Carácter:</th>
<th>Optativo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horas</td>
<td>4</td>
</tr>
<tr>
<td>Horas por semana</td>
<td>2</td>
</tr>
<tr>
<td>No. Créditos:</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo:</th>
<th>Teórico-Práctica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teoría:</td>
<td>2</td>
</tr>
<tr>
<td>Práctica:</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modalidad:</th>
<th>Tutoría</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duración del programa:</td>
<td>Semestral</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seriación:</th>
<th>Sin Seriación (X)</th>
<th>Obligatoria ()</th>
<th>Indicativa ()</th>
</tr>
</thead>
</table>

Objetivo general:
Fortalecer y profundizar en el tema que el alumno esté desarrollando en su investigación, si así lo requiere. El Comité Académico será el que autorice la realización de esta actividad académica, previa recomendación del comité tutor.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
<th>Teóricas</th>
<th>Prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total de horas:</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suma total de horas:</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El alumno realizará labores de investigación de biología experimental en otra institución, o en el tema que esté desarrollando en su investigación.</td>
</tr>
</tbody>
</table>

Bibliografía Básica:
La bibliografía se definirá dependiendo del tema de investigación del alumno.

Bibliografía Complementaria:
La bibliografía se definirá dependiendo del tema de investigación del alumno.

Sugerencias didácticas:
Exp. oral	(X)
Exposición audiovisual	(X)
Ejercicios dentro de clase	(X)
Ejercicios fuera del aula	(X)
Seminarios	(X)
Lecturas obligatorias	(X)
Trabajo de Investigación	(X)
Prácticas de taller o laboratorio	(X)
Prácticas de campo	()
Otros	

Mecanismos de evaluación de aprendizaje de los alumnos:
Exámenes Parciales	(X)
Examen final escrito	(X)
Trabajos y tareas fuera del aula	(X)
Exposición de seminarios por los alumnos	(X)
Participación en clase	(X)
Asistencia	(X)
Seminario	(X)
Otras	

Nota: El investigador anfitrión evaluará el desempeño del alumno durante su estancia.

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biología experimental, así como tener experiencia docente.
TEMAS SELECTOS DE BIOLOGÍA EXPERIMENTAL

<table>
<thead>
<tr>
<th>Denominación:</th>
<th>TEMAS SELECTOS DE BIOLOGÍA EXPERIMENTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clave:</td>
<td>Semestre(s): 1, 2 o 3</td>
</tr>
<tr>
<td>Campo de Conocimiento:</td>
<td>Biología Experimental</td>
</tr>
<tr>
<td>No. Créditos:</td>
<td>8</td>
</tr>
<tr>
<td>Carácter:</td>
<td>Optativo</td>
</tr>
<tr>
<td>Tipo:</td>
<td>Teórica</td>
</tr>
<tr>
<td>Horas Teóricas:</td>
<td>4</td>
</tr>
<tr>
<td>Horas Prácticas:</td>
<td>0</td>
</tr>
<tr>
<td>Horas Semanal:</td>
<td>4</td>
</tr>
<tr>
<td>Horas Semestre:</td>
<td>64</td>
</tr>
<tr>
<td>Modalidad:</td>
<td>Curso</td>
</tr>
<tr>
<td>Duración del programa:</td>
<td>Semestral</td>
</tr>
</tbody>
</table>

Objetivo general:
El alumno conocerá los temas emergentes, de frontera, complementarios, de interés formativo y de actualidad de la biología experimental que el Comité Académico considere importantes para la formación académica de los alumnos.

<table>
<thead>
<tr>
<th>Índice Temático</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidad</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

| Total de horas: | 64 |
| Suma total de horas: | 64 |

Contenido Temático

<table>
<thead>
<tr>
<th>Bibliografía Básica:</th>
</tr>
</thead>
<tbody>
<tr>
<td>La bibliografía se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bibliografía Complementaria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>La bibliografía se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sugerencias didácticas:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral: (X)</td>
</tr>
<tr>
<td>Exposición audiovisual: (X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase: (X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula: (X)</td>
</tr>
<tr>
<td>Seminarios: (X)</td>
</tr>
<tr>
<td>Lecturas obligatorias: (X)</td>
</tr>
<tr>
<td>Trabajo de Investigación: (X)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio: (X)</td>
</tr>
<tr>
<td>Prácticas de campo: (X)</td>
</tr>
<tr>
<td>Otros: (X)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exámenes Parciales: (X)</td>
</tr>
<tr>
<td>Examen final escrito: (X)</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula: (X)</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos: (X)</td>
</tr>
<tr>
<td>Participación en clase: (X)</td>
</tr>
<tr>
<td>Asistencia: (X)</td>
</tr>
<tr>
<td>Seminario: (X)</td>
</tr>
<tr>
<td>Otras: Ensayo (2)</td>
</tr>
</tbody>
</table>

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biología experimental, así como tener experiencia docente.
Campo de Conocimiento: Biomedicina
Temas Selectos-Estancia de Investigación

Denominación: TEMAS SELECTOS-ESTANCIA DE INVESTIGACIÓN
Clave: Semestre(s): 2 Campo de Conocimiento: Biomedicina No. Créditos: 8
Carácter: Optativo Horas por semana Horas al Semestre
Tipo: Teórico-Práctica Teoría: 2 Práctica: 2
Modalidad: Tutoría Duración del programa: Semestral

Seriación: Sin Seriación (X) Obligatoria () Indicativa ()
Objetivo general: Fortalecer y profundizar en el tema que el alumno esté desarrollando en su investigación, si así lo requiere. El Comité Académico será el que autorice la realización de esta actividad académica, previa recomendación del comité tutor.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Teóricas</td>
</tr>
<tr>
<td></td>
<td>El alumno realizará labores de investigación de biomedicina en otra institución, o en el tema que esté desarrollando en su investigación.</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Suma total de horas:</td>
<td>64</td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El alumno realizará labores de investigación de biomedicina en otra institución, o en el tema que esté desarrollando en su investigación.</td>
</tr>
</tbody>
</table>

Bibliografía Básica:
La bibliografía se definirá dependiendo del tema de investigación del alumno.

Bibliografía Complementaria:
La bibliografía se definirá dependiendo del tema de investigación del alumno.

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Exposición oral</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición audiovisual</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X)</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>(X)</td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

<table>
<thead>
<tr>
<th>Exámenes Parciales</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examen final escrito</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
<td>(X)</td>
</tr>
<tr>
<td>Participación en clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Asistencia</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminario</td>
<td>(X)</td>
</tr>
<tr>
<td>Otras:</td>
<td></td>
</tr>
</tbody>
</table>

Nota: El investigador anfitrión evaluará el desempeño del alumno durante su estancia.

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biomedicina, así como tener experiencia docente.
Denominación: TEMAS SELECTOS DE BIOMEDICINA

<table>
<thead>
<tr>
<th>Clave:</th>
<th>Semestre(s): 1, 2 o 3</th>
<th>Campo de Conocimiento: Biomedicina</th>
<th>No. Créditos: 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carácter:</td>
<td>Optativo</td>
<td>Horas</td>
<td>Horas por semana</td>
</tr>
<tr>
<td>Tipo:</td>
<td>Teórica</td>
<td>Teoría: 4</td>
<td>Práctica: 0</td>
</tr>
<tr>
<td>Modalidad:</td>
<td>Curso</td>
<td>Duración del programa: Semestral</td>
<td></td>
</tr>
</tbody>
</table>

Seriación: Sin Seriación (X) Obligatoria () Indicativa ()

Objetivo general:
El alumno conocerá los temas emergentes, de frontera, complementarios, de interés formativo y de actualidad de la biología biomedicina que el Comité Académico considere importantes para la formación académica de los alumnos.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El contenido temático y distribución de horas se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.

| Total de horas: | 64 | 0 |
| Suma total de horas: | 64 |

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El contenido temático se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.

Bibliografía Básica:

La bibliografía se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.

Bibliografía Complementaria:

La bibliografía se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.

Sugerencias didácticas:

<table>
<thead>
<tr>
<th></th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición oral</td>
<td></td>
</tr>
<tr>
<td>Exposición audiovisual</td>
<td></td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td></td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td></td>
</tr>
<tr>
<td>Seminarios</td>
<td></td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td></td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td></td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td></td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td></td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

<table>
<thead>
<tr>
<th></th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exámenes Parciales</td>
<td></td>
</tr>
<tr>
<td>Examen final escrito</td>
<td></td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
<td></td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
<td></td>
</tr>
<tr>
<td>Participación en clase</td>
<td></td>
</tr>
<tr>
<td>Asistencia</td>
<td></td>
</tr>
<tr>
<td>Seminario</td>
<td></td>
</tr>
<tr>
<td>Otras: Ensayo (2)</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en biomedicina, así como tener experiencia docente.
Campo de Conocimiento: Ecología
Denominación:
TEMAS SELECTOS-ESTANCIA DE INVESTIGACIÓN

<table>
<thead>
<tr>
<th>Clave:</th>
<th>Semestre(s):</th>
<th>Campo de Conocimiento:</th>
<th>No. Créditos:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>Ecología</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carácter:</th>
<th>Horas</th>
<th>Horas por semana</th>
<th>Horas al Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optativo</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo:</th>
<th>Teórico-Práctica</th>
<th>Teoría:</th>
<th>Práctica:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modalidad:</th>
<th>Tutoría</th>
<th>Duración del programa:</th>
<th>Semestral</th>
</tr>
</thead>
</table>

Objetivo general:
Fortalecer y profundizar en el tema que el alumno esté desarrollando en su investigación, si así lo requiere. El Comité Académico será el que autorice la realización de esta actividad académica, previa recomendación del comité tutor.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
<th>Teorías</th>
<th>Prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>64</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El alumno realizará labores de investigación de ecología en otra institución, o en el tema que esté desarrollando en su investigación.</td>
</tr>
</tbody>
</table>

Bibliografía Básica:
La bibliografía se definirá dependiendo del tema de investigación del alumno.

Bibliografía Complementaria:
La bibliografía se definirá dependiendo del tema de investigación del alumno.

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Exposición oral</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición audiovisual</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminarios</td>
<td>(X)</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>(X)</td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

Exámenes Parciales	(X)
Examen final escrito	(X)
Trabajos y tareas fuera del aula	(X)
Exposición de seminarios por los alumnos	(X)
Participación en clase	(X)
Asistencia	(X)
Seminario	(X)
Otras:	

Nota: El investigador anfitrión evaluará el desempeño del alumno durante su estancia.

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en ecología, así como tener experiencia docente.
Denominación: TEMAS SELECTOS DE ECOLOGÍA

<table>
<thead>
<tr>
<th>Clave:</th>
<th>Semestre(s): 1, 2 y 3</th>
<th>Campo de Conocimiento: Ecología</th>
<th>No. Créditos: 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carácter:</td>
<td>Optativo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horas</td>
<td>Teoría: 4</td>
<td>Práctica: 0</td>
<td>4</td>
</tr>
<tr>
<td>Modalidad:</td>
<td>Curso</td>
<td>Duración del programa: Semestral</td>
<td></td>
</tr>
<tr>
<td>Seriación:</td>
<td>Sin Seriación (X)</td>
<td>Obligatoria ()</td>
<td>Indicativa ()</td>
</tr>
</tbody>
</table>

Objetivo general:
El alumno conocerá los temas emergentes, de frontera, complementarios, de interés formativo y de actualidad de la ecología que el Comité Académico considere importantes para la formación académica de los alumnos.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El contenido temático se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.</td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El contenido temático se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.</td>
</tr>
</tbody>
</table>

Bibliografía Básica:
La bibliografía se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.

Bibliografía Complementaria:
La bibliografía se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.

Sugerencias didácticas:
- Exposición oral (X)
- Exposición audiovisual (X)
- Ejercicios dentro de clase (X)
- Ejercicios fuera del aula (X)
- Seminarios (X)
- Lecturas obligatorias (X)
- Trabajo de Investigación (X)
- Prácticas de taller o laboratorio ()
- Prácticas de campo ()
- Otros: ()

Mecanismos de evaluación de aprendizaje de los alumnos:
- Exámenes Parciales (X)
- Examen final escrito (X)
- Trabajos y tareas fuera del aula (X)
- Exposición de seminarios por los alumnos (X)
- Participación en clase (X)
- Asistencia (X)
- Seminario ()
- Otras: Ensayo (2)

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en ecología, así como tener experiencia docente.
Campo de Conocimiento: Manejo Integral de Ecosistemas
Denominación: TEMAS SELECTOS-ESTANCIA DE INVESTIGACIÓN

<table>
<thead>
<tr>
<th>Clave:</th>
<th>Semestre(s): 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campo de Conocimiento:</td>
<td>Manejo Integral de Ecosistemas</td>
</tr>
<tr>
<td>No. Créditos:</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carácter: Optativo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horas</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Teoría: 2</td>
</tr>
<tr>
<td>Práctica: 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo: Teórico-Práctica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalidad: Tutoría</td>
</tr>
<tr>
<td>Duración del programa: Semestral</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seriación: Sin Seriación (X)</th>
<th>Obligatoria ()</th>
<th>Indicativa ()</th>
</tr>
</thead>
</table>

Objetivo general:
Fortalecer y profundizar en el tema que el alumno esté desarrollando en su investigación, si así lo requiere. El Comité Académico será el que autorice la realización de esta actividad académica, previa recomendación del comité tutor.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas Teóricas</th>
<th>Horas Prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El alumno realizará labores de investigación de manejo integral de ecosistemas en otra institución, o en el tema que esté desarrollando en su investigación.</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Total de horas:</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suma total de horas:</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El alumno realizará labores de investigación de manejo integral de ecosistemas en otra institución, o en el tema que esté desarrollando en su investigación.</td>
</tr>
</tbody>
</table>

Bibliografía Básica:
La bibliografía se definirá dependiendo del tema de investigación del alumno.

Bibliografía Complementaria:
La bibliografía se definirá dependiendo del tema de investigación del alumno.

Sugerencias didácticas:
- Exposición oral (X)
- Exposición audiovisual (X)
- Ejercicios dentro de clase (X)
- Ejercicios fuera del aula (X)
- Seminarios (X)
- Lecturas obligatorias (X)
- Trabajo de Investigación (X)
- Prácticas de taller o laboratorio (X)
- Prácticas de campo (X)
- Otros:

<table>
<thead>
<tr>
<th>Mecanismos de evaluación de aprendizaje de los alumnos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exámenes Parciales (X)</td>
</tr>
<tr>
<td>Examen final escrito (X)</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula (X)</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos (X)</td>
</tr>
<tr>
<td>Participación en clase (X)</td>
</tr>
<tr>
<td>Asistencia (X)</td>
</tr>
<tr>
<td>Seminario (X)</td>
</tr>
<tr>
<td>Otras:</td>
</tr>
</tbody>
</table>

Nota: El investigador anfitrión evaluará el desempeño del alumno durante su estancia.

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en manejo integral de ecosistemas, así como tener experiencia docente.
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO
PROGRAMA DE POSGRADO EN CIENCIAS BIOLÓGICAS
MAESTRÍA EN CIENCIAS BIOLÓGICAS
Programa de actividad académica

Denominación: TEMAS SELECTOS DE MANEJO INTEGRAL DE ECOSISTEMAS
Clave: Semestre(s): Campo de Conocimiento: Manejo Integral de Ecosistemas No. Créditos: 8
Carácter: Optativo Horas Horas por semana Horas al Semestre
Tipo: Teórica Teoría: 4 Práctica: 0
Modalidad: Curso Duración del programa: Semestral

Seriación: Sin Seriación (X) Obligatoria () Indicativa ()
Objetivo general:
El alumno conocerá los temas emergentes, de frontera, complementarios, de interés formativo y de actualidad del manejo integral de ecosistemas que el Comité Académico considere importantes para la formación académica de los alumnos.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Teóricas</td>
<td>Prácticas</td>
</tr>
<tr>
<td></td>
<td>Total de horas: 64</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Suma total de horas: 64</td>
<td></td>
</tr>
</tbody>
</table>

El contenido temático se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.

 contiene Temático
Unidad	Tema y Subtemas
	El contenido temático se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.

Bibliografía Básica:
La bibliografía se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.

Bibliografía Complementaria:
La bibliografía se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.

Sugerencias didácticas:
- Exposición oral (X)
- Exposición audiovisual (X)
- Ejercicios dentro de clase (X)
- Ejercicios fuera del aula (X)
- Seminarios (X)
- Lecturas obligatorias (X)
- Trabajo de Investigación (X)
- Prácticas de taller o laboratorio (X)
- Prácticas de campo (X)
- Otros:

Mecanismos de evaluación de aprendizaje de los alumnos:
- Exámenes Parciales (X)
- Examen final escrito (X)
- Trabajos y tareas fuera del aula (X)
- Exposición de seminarios por los alumnos (X)
- Participación en clase (X)
- Asistencia (X)
- Seminarío (X)
- Otras: Ensayo (2)

Perfil profesiográfico:
El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en manejo integral de ecosistemas, así como tener experiencia docente.
Campo de Conocimiento: Sistemática
Denominación: TEMAS SELECTOS-ESTANCIA DE INVESTIGACIÓN

<table>
<thead>
<tr>
<th>Carácter: Optativo</th>
<th>Horas por semana</th>
<th>Horas al Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>64</td>
</tr>
</tbody>
</table>

Teoría: 2
Práctica: 2

Tipo: Teórico-Práctica

Clave: Semestre(s): 2
Campo de Conocimiento: Sistemática
No. Créditos: 8

Modalidad: Tutoría

Duración del programa: Semestral

Seriación: Sin Seriación (X)
Obligatoria ()
Indicativa ()

Objetivo general: Fortalecer y profundizar en el tema que el alumno esté desarrollando en su investigación, si así lo requiere. El Comité Académico será el que autorice la realización de esta actividad académica, previa recomendación del comité tutor.

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Teóricas</td>
</tr>
<tr>
<td>El alumno realizará labores de investigación de sistemática en otra institución, o en el tema que esté desarrollando en su investigación.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total de horas:</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Suma total de horas:</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

Contenido Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El alumno realizará labores de investigación de sistemática en otra institución, o en el tema que esté desarrollando en su investigación.</td>
</tr>
</tbody>
</table>

Bibliografía Básica:

La bibliografía se definirá dependiendo del tema de investigación del alumno.

Bibliografía Complementaria:

La bibliografía se definirá dependiendo del tema de investigación del alumno.

Sugerencias didácticas:

- Exposición oral (X)
- Exposición audiovisual (X)
- Ejercicios dentro de clase (X)
- Ejercicios fuera del aula (X)
- Seminarios (X)
- Lecturas obligatorias (X)
- Trabajo de Investigación (X)
- Prácticas de taller o laboratorio (X)
- Prácticas de campo (X)
- Otros:

Mecanismos de evaluación de aprendizaje de los alumnos:

- Exámenes Parciales (X)
- Examen final escrito (X)
- Trabajos y tareas fuera del aula (X)
- Exposición de seminarios por los alumnos (X)
- Participación en clase (X)
- Asistencia (X)
- Seminario (X)
- Otras:

Nota: El investigador anfitrión evaluará el desempeño del alumno durante su estancia.

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en sistemática, así como tener experiencia docente.
Denominación: TEMAS SELECTOS DE SISTEMÁTICA

<table>
<thead>
<tr>
<th>Clave:</th>
<th>Semestre(s):</th>
<th>Campo de Conocimiento:</th>
<th>No. Créditos:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1, 2 u 3</td>
<td>Sistemática</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carácter:</th>
<th>Horas</th>
<th>Horas por semana</th>
<th>Horas al Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optativo</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo:</th>
<th>Teoría</th>
<th>Práctica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teórica</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modalidad:</th>
<th>Duración del programa:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curso</td>
<td>Semestral</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seriación:</th>
<th>Sin Seriación (X)</th>
<th>Obligatoria ()</th>
<th>Indicativa ()</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Objetivo general:</th>
</tr>
</thead>
<tbody>
<tr>
<td>El alumno conocerá los temas emergentes, de frontera, complementarios, de interés formativo y de actualidad de sistemática que el Comité Académico considere importantes para la formación académica de los alumnos.</td>
</tr>
</tbody>
</table>

Índice Temático

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Tema y Subtemas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El contenido temático se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.</td>
</tr>
</tbody>
</table>

| Total de horas: | 64 |
| Suma total de horas: | 64 |

<table>
<thead>
<tr>
<th>Contenido Temático</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidad</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Bibliografía Básica:

La bibliografía se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.

Bibliografía Complementaria:

La bibliografía se definirá cuando el Comité Académico apruebe los temas que se estudiarán en el semestre.

Sugerencias didácticas:

<table>
<thead>
<tr>
<th>Exposición oral</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición audiovisual</td>
<td>()</td>
</tr>
<tr>
<td>Ejercicios dentro de clase</td>
<td>()</td>
</tr>
<tr>
<td>Ejercicios fuera del aula</td>
<td>()</td>
</tr>
<tr>
<td>Seminarios</td>
<td>()</td>
</tr>
<tr>
<td>Lecturas obligatorias</td>
<td>(X)</td>
</tr>
<tr>
<td>Trabajo de Investigación</td>
<td>(X)</td>
</tr>
<tr>
<td>Prácticas de taller o laboratorio</td>
<td>()</td>
</tr>
<tr>
<td>Prácticas de campo</td>
<td>()</td>
</tr>
<tr>
<td>Otros:</td>
<td></td>
</tr>
</tbody>
</table>

Mecanismos de evaluación de aprendizaje de los alumnos:

<table>
<thead>
<tr>
<th>Exámenes Parciales</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examen final escrito</td>
<td>()</td>
</tr>
<tr>
<td>Trabajos y tareas fuera del aula</td>
<td>()</td>
</tr>
<tr>
<td>Exposición de seminarios por los alumnos</td>
<td>()</td>
</tr>
<tr>
<td>Participación en clase</td>
<td>(X)</td>
</tr>
<tr>
<td>Asistencia</td>
<td>(X)</td>
</tr>
<tr>
<td>Seminario</td>
<td>()</td>
</tr>
<tr>
<td>Otras: Ensayo (2)</td>
<td></td>
</tr>
</tbody>
</table>

Perfil profesiográfico:

El profesor o profesores deberán contar con el grado de maestría o doctorado y poseer amplios conocimientos y experiencia en sistemática, así como tener experiencia docente.
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Dr. Enrique Graue Wiechers Rector

Dr. Leonardo Lomelí Vanegas
Secretario General

Dr. Alberto Ken Oyama Nakagawa
Secretario de Desarrollo Institucional

Dr. Javier Nieto Gutiérrez
Coordinador de Estudios de Posgrado

Dra. María del Coro Arizmendi Arriaga
Coordinadora del Posgrado en Ciencias Biológicas